Laser & Optoelectronics Progress, Volume. 60, Issue 11, 1106007(2023)

Research on Distributed Fiber Temperature/Strain/Shape Sensing Based on OFDR

Cailing Fu1,2, Zhenwei Peng1,2, Pengfei Li1,2, Yanjie Meng1,2, Huajian Zhong1,2, Chao Du1,2, and Yiping Wang1,2,3、*
Author Affiliations
  • 1Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, Guangdong, China
  • 2Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
  • 3Guangdong Laboratory of Artificial Intelligence and Digital Economy (Shenzhen), Shenzhen 518107, Guangdong, China
  • show less
    References(48)

    [1] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proceedings of the Institution of Electrical Engineers, 113, 1151-1158(1966).

    [2] Lee B. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology, 9, 57-79(2003).

    [3] Hopkins H H, Kapany N S. A flexible fibrescope, using static scanning[J]. Nature, 173, 39-41(1954).

    [4] Liu D M, He T, Xu Z J et al. New type of microstructure-fiber distributed acoustic sensing technology and its applications[J]. Journal of Applied Sciences, 38, 296-309(2020).

    [5] Juarez J C, Maier E W, Choi K N et al. Distributed fiber-optic intrusion sensor system[J]. Journal of Lightwave Technology, 23, 2081-2087(2005).

    [6] Ding Z Y, Wang C H, Liu K et al. Distributed optical fiber sensors based on optical frequency domain reflectometry: a review[J]. Sensors, 18, 1072(2018).

    [7] Li P F, Fu C L, Du B et al. High-spatial-resolution strain sensor based on distance compensation and image wavelet denoising method in OFDR[J]. Journal of Lightwave Technology, 39, 6334-6339(2021).

    [8] Song J, Li W H, Lu P et al. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry[J]. IEEE Photonics Journal, 6, 6801408(2014).

    [9] Kreger S T, Sang A K, Gifford D K et al. Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter[J]. Proceedings of SPIE, 7316, 73160A(2009).

    [10] Beisenova A, Issatayeva A, Korganbayev S et al. Simultaneous distributed sensing on multiple MgO-doped high scattering fibers by means of scattering-level multiplexing[J]. Journal of Lightwave Technology, 37, 3413-3421(2019).

    [11] Meng Y J, Fu C L, Chen L et al. Submillimeter-spatial-resolution φ-OFDR strain sensor using femtosecond laser induced permanent scatters[J]. Optics Letters, 47, 6289-6292(2022).

    [12] Canning J. Fibre gratings and devices for sensors and lasers[J]. Laser & Photonics Review, 2, 275-289(2008).

    [13] Lu P, Mihailov S J, Coulas D et al. Low-loss random fiber gratings made with an fs-IR laser for distributed fiber sensing[J]. Journal of Lightwave Technology, 37, 4697-4702(2019).

    [14] Yan A D, Huang S, Li S et al. Distributed optical fiber sensors with ultrafast laser enhanced Rayleigh backscattering profiles for real-time monitoring of solid oxide fuel cell operations[J]. Scientific Reports, 7, 1-9(2017).

    [15] Loranger S, Gagné M, Lambin-Iezzi V et al. Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre[J]. Scientific Reports, 5, 1-7(2015).

    [16] Ai F. Research on key technologies and applications of distributed sensing based on discrete reinforced fiber[D](2019).

    [17] Du C, Fu C L, Li P F et al. High-spatial-resolution strain sensor based on Rayleigh-scattering-enhanced SMF using direct UV exposure[J]. Journal of Lightwave Technology, 41, 1566-1570(2023).

    [18] Meng Y J, Fu C L, Du C et al. Shape sensing using two outer cores of multicore fiber and optical frequency domain reflectometer[J]. Journal of Lightwave Technology, 39, 6624-6630(2021).

    [19] Du B, He J, Xu B J et al. High-density weak in-fiber micro-cavity array for distributed high-temperature sensing with millimeter spatial resolution[J]. Journal of Lightwave Technology, 40, 7447-7455(2022).

    [20] Lindner E, Hartung A, Hoh D et al. Trends and future of fiber Bragg grating sensing technologies: tailored draw tower gratings (DTGs)[J]. Proceedings of SPIE, 9141, 91410X(2014).

    [21] Guo H Y, Tang J G, Li X F et al. On-line writing identical and weak fiber Bragg grating arrays[J]. Chinese Optics Letters, 11, 030602(2013).

    [22] Xu B J, He J, Du B et al. Femtosecond laser point-by-point inscription of an ultra-weak fiber Bragg grating array for distributed high-temperature sensing[J]. Optics Express, 29, 32615-32626(2021).

    [23] Fan X Y, Koshikiya Y, Ito F. Phase-noise-compensated optical frequency domain reflectometry with measurement range beyond laser coherence length realized using concatenative reference method[J]. Optics Letters, 32, 3227-3229(2007).

    [24] Fan X Y, Koshikiya Y, Ito F. Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR[J]. Optics Express, 19, 19122-19128(2011).

    [25] Ding Z Y, Yao X S, Liu T G et al. Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter[J]. Optics Express, 21, 3826-3834(2013).

    [26] Wang B, Fan X Y, Wang S et al. Millimeter-resolution long-range OFDR using ultra-linearly 100 GHz-swept optical source realized by injection-locking technique and cascaded FWM process[J]. Optics Express, 25, 3514-3524(2017).

    [27] Luo M M, Liu J F, Tang C J et al. 0.5 mm spatial resolution distributed fiber temperature and strain sensor with position-deviation compensation based on OFDR[J]. Optics Express, 27, 35823-35829(2019).

    [28] Feng Y X, Xie W L, Meng Y X et al. High-performance optical frequency-domain reflectometry based on high-order optical phase-locking-assisted chirp optimization[J]. Journal of Lightwave Technology, 38, 6227-6236(2020).

    [29] Yin G L, Jiang R, Zhu T. In-fiber auxiliary interferometer to compensate laser nonlinear tuning in simplified OFDR[J]. Journal of Lightwave Technology, 40, 837-843(2022).

    [30] Zhong H J, Fu C L, Li P F et al. Distributed high-temperature sensing based on optical frequency domain reflectometry with a standard single-mode fiber[J]. Optics Letters, 47, 882-885(2022).

    [31] Qu S. Research on data processing and performance Improvement of distributed optical fiber sensing system based on OFDR[D](2022).

    [32] Zhao S Y, Cui J W, Suo L J et al. Performance investigation of OFDR sensing system with a wide strain measurement range[J]. Journal of Lightwave Technology, 37, 3721-3727(2019).

    [33] Li W H, Chen L, Bao X Y. Compensation of temperature and strain coefficients due to local birefringence using optical frequency domain reflectometry[J]. Optics Communications, 311, 26-32(2013).

    [34] Chiuchiolo A, Palmieri L, Consales M et al. Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors[J]. Optics Letters, 40, 4424-4427(2015).

    [35] Xin G, Li Z Y, Fan W et al. Distributed sensing technology of high-spatial resolution based on dense ultra-short FBG array with large multiplexing capacity[J]. Optics Express, 25, 28112-28122(2017).

    [36] Suo L J, Lei Z K, Zhao S Y et al. Study on sliding-window length based on Rayleigh backscattering spectrum correlation in distributed optical-fiber strain measurement[J]. Optical Fiber Technology, 47, 126-132(2019).

    [37] Zhong H J, Fu C L, Wang L J et al. High-spatial-resolution OFDR with single interferometer using self-compensation method[J]. Optics and Lasers in Engineering, 161, 107341(2023).

    [38] Song J, Li W H, Lu P et al. Long-range high spatial resolution distributed temperature and strain sensing based on optical frequency-domain reflectometry[J]. IEEE Photonics Journal, 6, 6801408(2014).

    [39] Zhao S Y, Cui J W, Wu Z J et al. Accuracy improvement in OFDR-based distributed sensing system by image processing[J]. Optics and Lasers in Engineering, 124, 105824(2020).

    [40] Li P F, Fu C L, Zhong H J et al. A nondestructive measurement method of optical fiber young’s modulus based on OFDR[J]. Sensors, 22, 1450(2022).

    [41] Duncan R G, Froggatt M E, Kreger S T et al. High-accuracy fiber-optic shape sensing[J]. Proceedings of SPIE, 6530, 487-497(2007).

    [42] Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 20, 2967-2973(2012).

    [43] Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 20, 2967-2973(2012).

    [44] Khan F, Denasi A, Barrera D et al. Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments[J]. IEEE Sensors Journal, 19, 5878-5884(2019).

    [45] Barrera D, Madrigal J, Delepine-Lesoille S et al. Multicore optical fiber shape sensors suitable for use under gamma radiation[J]. Optics Express, 27, 29026-29033(2019).

    [46] Khan F, Barrera D, Sales S et al. Curvature, twist and pose measurements using fiber Bragg gratings in multi-core fiber: a comparative study between helical and straight core fibers[J]. Sensors and Actuators A: Physical, 317, 112442(2021).

    [47] Idrisov R, Floris I, Rothhardt M et al. Characterization and calibration of shape sensors based on multicore optical fibre[J]. Optical Fiber Technology, 61, 102319(2021).

    [48] Xiao X Z, Xu B J, Xu X Z et al. Femtosecond laser auto-positioning direct writing of a multicore fiber Bragg grating array for shape sensing[J]. Optics Letters, 47, 758-761(2022).

    Tools

    Get Citation

    Copy Citation Text

    Cailing Fu, Zhenwei Peng, Pengfei Li, Yanjie Meng, Huajian Zhong, Chao Du, Yiping Wang. Research on Distributed Fiber Temperature/Strain/Shape Sensing Based on OFDR[J]. Laser & Optoelectronics Progress, 2023, 60(11): 1106007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Feb. 27, 2023

    Accepted: Apr. 7, 2023

    Published Online: Jun. 5, 2023

    The Author Email: Wang Yiping (ypwang@szu.edu.cn)

    DOI:10.3788/LOP230701

    Topics