Opto-Electronic Engineering, Volume. 31, Issue 8, 69(2004)
The application of statistic model for complex wavelet coefficients in image denoising
[1] [1] DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
[2] [2] DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.
[3] [3] DONOHO D L, JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of American Statistical Assoc, 1995, 90(432): 1200-1224.
[4] [4] CHANG S, YU B, VETTERLI M. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546.
[5] [5] CROUSE M S, NOWAK R D. Wavelet-based signal processing using hidden markov models[J]. IEEE Transactions on Signal Processing, 1998, 46(4): 886-902.
[6] [6] KINGSBURY N. The dual-tree complex wavelet transform: a new efficient tool for image restoration and enhancement[A]. Proc. EUSIPCO 98[C], Rhodes: EURASIP, 1998: 319-322.
[7] [7] KINGSBURY N. A dual-tree complex wavelet transform with improved orthogonality and symmetry properties[A]. Proc. IEEE Conf. on Image Processing[C], Vancouver:IEEE, 2000, 2: 375-378.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese]. The application of statistic model for complex wavelet coefficients in image denoising[J]. Opto-Electronic Engineering, 2004, 31(8): 69