Bulletin of the Chinese Ceramic Society, Volume. 42, Issue 8, 3005(2023)

Electrochemical Sensor Based on Nano-ZnO-C Composite Materials for Determination of Hydroquinone

LOU Tongfang1、*, XU Hongjie2, PAN Jimin3, ZHANG Yan4, and LEI Honghong5
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • 5[in Chinese]
  • show less
    References(23)

    [2] [2] GAO W H, LEGIDO-QUIGLEY C. Fast and sensitive high performance liquid chromatography analysis of cosmetic creams for hydroquinone, phenol and six preservatives[J]. Journal of Chromatography A, 2011, 1218(28): 4307-4311.

    [3] [3] ALQARNI M H, ALAM P, SHAKEEL F, et al. Highly sensitive and ecologically sustainable reversed-phase HPTLC method for the determination of hydroquinone in commercial whitening creams[J]. Processes, 2021, 9(9): 1631.

    [6] [6] FAN L F, WU X Q, GUO M D, et al. Cobalt hydroxide film deposited on glassy carbon electrode for electrocatalytic oxidation of hydroquinone[J]. Electrochimica Acta, 2007, 52(11): 3654-3659.

    [7] [7] PENG Y, TANG Z R, DONG Y P, et al. Electrochemical detection of hydroquinone based on MoS2/reduced graphene oxide nanocomposites[J]. Journal of Electroanalytical Chemistry, 2018, 816: 38-44.

    [8] [8] JIANG H M, WANG S Q, DENG W F, et al. Graphene-like carbon nanosheets as a new electrode material for electrochemical determination of hydroquinone and catechol[J]. Talanta, 2017, 164: 300-306.

    [9] [9] HU C X, ZHANG W, ZHENG Z F, et al. Facile preparation of silver nanoparticle decorated RGO nanostructures with enhanced simultaneous detection property for hydroquinone and catechol[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2023, 31(4): 349-356.

    [10] [10] KHAND N H, PALABIYIK I M, BULEDI J A, et al. Functional Co3O4 nanostructure-based electrochemical sensor for direct determination of ascorbic acid in pharmaceutical samples[J]. Journal of Nanostructure in Chemistry, 2021, 11(3): 1-14.

    [11] [11] DE CARVALHO R M, MELLO C, KUBOTA L T. Simultaneous determination of phenol isomers in binary mixtures by differential pulse voltammetry using carbon fibre electrode and neural network with pruning as a multivariate calibration tool[J]. Analytica Chimica Acta, 2000, 420(1): 109-121.

    [12] [12] MANJUNATHA J G. Poly (adenine) modified graphene-based voltammetric sensor for the electrochemical determination of catechol, hydroquinone and resorcinol[J]. The Open Chemical Engineering Journal, 2020, 14: 52-62.

    [14] [14] LU Z Y, WANG Y E, ZHU Y M, et al. Popcorn-derived porous carbon based electrochemical sensor for simultaneous determination of hydroquinone, catechol and nitrite[J]. ChemistrySelect, 2022, 7(24): 2-10.

    [16] [16] HARSHITHA B T, MANJUNATHA J G, PUSHPANJALI P A, et al. Efficient electrochemical determination of catechol with hydroquinone at poly (L-serine) layered carbon paste electrode[J]. Chemistry Select, 2021, 6(26): 6764-6772.

    [17] [17] AKINOGLU E M, KTELHN E, PAMPEL J, et al. Nanoscopic carbon electrodes: structure, electrical properties and application for electrochemistry[J]. Carbon, 2018, 130: 768-774.

    [18] [18] CAO Z Y, SU B. Light enhanced electrochemistry and electrochemiluminescence of luminol at glassy carbon electrodes[J]. Electrochemistry Communications, 2019, 98: 47-52.

    [19] [19] ALIM S, VEJAYAN J, YUSOFF M M, et al. Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: a review[J]. Biosensors and Bioelectronics, 2018, 121: 125-136.

    [21] [21] ALLWAR A, SETYANI A, SUGESTI U, et al. Physical-chemical characterization of nano-zinc oxide/activated carbon composite for phenol removal from aqueous solution[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2021, 16(1): 136-147.

    [22] [22] HAO J X, JI L D, WU K B, et al. Electrochemistry of ZnO@reduced graphene oxides[J]. Carbon, 2018, 130: 480-486.

    [23] [23] MIAO F J, WU W Y, MIAO R, et al. Graphene/nano-ZnO hybrid materials modify Ni-foam for high-performance electrochemical glucose sensors[J]. Ionics, 2018, 24(12): 4005-4014.

    [32] [32] ROYCHOUDHURY A, BASU S, JHA S K. Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform[J]. Biosensors and Bioelectronics, 2016, 84: 72-81.

    [33] [33] LAVIRON E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979, 101(1): 19-28.

    [35] [35] ZHANG Y, WANG L T, LU D B, et al. Sensitive determination of bisphenol A base on arginine functionalized nanocomposite graphene film[J]. Electrochimica Acta, 2012, 80: 77-83.

    [36] [36] DE OLIVEIRA I R W Z, VIEIRA I C. Immobilization procedures for the development of a biosensor for determination of hydroquinone using chitosan and gilo (Solanum gilo)[J]. Enzyme and Microbial Technology, 2006, 38(3/4): 449-456.

    [37] [37] DE OLIVEIRA I R W Z, DE BARROS OSRIO R E H M, NEVES A, et al. Biomimetic sensor based on a novel copper complex for the determination of hydroquinone in cosmetics[J]. Sensors and Actuators B: Chemical, 2007, 122(1): 89-94.

    [38] [38] YAO Y Z, LIU Y C, YANG Z S. A novel electrochemical sensor based on a glassy carbon electrode modified with Cu-MWCNT nanocomposites for determination of hydroquinone[J]. Analytical Methods, 2016, 8(12): 2568-2575.

    Tools

    Get Citation

    Copy Citation Text

    LOU Tongfang, XU Hongjie, PAN Jimin, ZHANG Yan, LEI Honghong. Electrochemical Sensor Based on Nano-ZnO-C Composite Materials for Determination of Hydroquinone[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 3005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 14, 2023

    Accepted: --

    Published Online: Nov. 1, 2023

    The Author Email: Tongfang LOU (loutongfang88@163.com)

    DOI:

    Topics