Journal of Inorganic Materials, Volume. 38, Issue 7, 800(2023)

Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials

Yani XIAO1, Jianan LYU1,2, Zhenming LI3, Mingyang LIU3, Wei LIU3, Zhigang REN4, Hongjing LIU4, Dongwang YANG1、*, and Yonggao YAN1、*
Author Affiliations
  • 11. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • 22. Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
  • 33. Energy Storage and Electrotechnics Department, China Electric Power Research Institute, Beijing 100192, China
  • 44. SGCC Beijing Electric Power Research Institute, Beijing 100075, China
  • show less
    References(38)

    [3] NOZARIASBMARZ A, DYCUS J H, CABRAL M J et al. Efficient self-powered wearable electronic systems enabled by microwave processed thermoelectric materials[J]. Applied Energy, 116211(2021).

    [4] HOU C C, VAN TOAN N, ONO T. High density micro-thermoelectric generator based on electrodeposition of Bi2Te3 and Sb2Te3[J]. Tokyo.

    [6] YUAN X, L Z, SHAO Y et al. Bi2Te3-based wearable thermoelectric generator with high power density: from structure design to application[J]. Journal of Materials Chemistry C, 6456(2022).

    [8] LU Z, ZHANG H, MAO C et al. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body[J]. Applied Energy, 57(2016).

    [9] WANG Y, SHI Y, MEI D et al. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer[J]. Applied Energy, 690(2018).

    [11] YOU H, LI Z, SHAO Y et al. Flexible Bi2Te3-based thermoelectric generator with an ultra-high power density[J]. Applied Thermal Engineering, 117818(2022).

    [15] MAMUR H, BHUIYAN M R A, KORKMAZ F et al. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications[J]. Renewable and Sustainable Energy Reviews, 4159(2018).

    [16] ZHU W, WEI P, ZHANG J et al. Fabrication and excellent performances of bismuth telluride-based thermoelectric devices[J]. ACS Applied Materials & Interfaces, 12276(2022).

    [17] LIN Y, WU X, LI Y et al. Revealing multi-stage growth mechanism of Kirkendall voids at electrode interfaces of Bi2Te3-based thermoelectric devices with in-situ TEM technique[J]. Nano Energy, 107736(2022).

    [21] LIN C F, HAU N Y, HUANG Y T et al. Synergetic effect of Bi2Te3 alloys and electrodeposition of Ni for interfacial reactions at solder/Ni/Bi2Te3 joints[J]. Journal of Alloys and Compounds, 220(2017).

    [23] JIANG C, FAN X A, FENG B et al. Thermal stability of p-type polycrystalline Bi2Te3-based bulks for the application on thermoelectric power generation[J]. Journal of Alloys and Compounds, 885(2017).

    [25] TANG H, HUI B, YANG X et al. Thermal stability and interfacial structure evolution of Bi2Te3-based micro thermoelectric devices[J]. Journal of Alloys and Compounds, 163090(2022).

    [26] ARUN P, TYAGI P, VEDESHWAR et al. Ageing effect of Sb2Te3 thin films ageing effect of Sb2Te3 thin films[J]. Physica B: Condensed Matter, 105(2001).

    [27] BANDO H, KOIZUMI K, OIKAWA Y et al. The time-dependent process of oxidation of the surface of Bi2Te3 studied by X-ray photoelectron spectroscopy[J]. Journal of Physics: Condensed Matter, 5607(2000).

    [28] GUO J H, QIU F, ZHANG Y et al. Surface oxidation properties in a topological insulator Bi2Te3 film[J]. Chinese Physics Letters, 106801(2013).

    [29] MUSIC D, CHANG K, SCHMIDT P et al. On atomic mechanisms governing the oxidation of Bi2Te3[J]. Journal of Physics: Condensed Matter, 485705(2017).

    [30] SIROTINA A P, CALLAERT C, VOLYKHOV A A et al. Mechanistic studies of gas reactions with multicomponent solids: what can we learn by combining NAP XPS and atomic resolution STEM/EDX?[J]. The Journal of Physical Chemistry C, 26201(2019).

    [31] THOMAS C R, VALLON M K, FRITH M G et al. Surface oxidation of Bi2(Te,Se)3 topological insulators depends on cleavage accuracy[J]. Chemistry of Materials, 35(2016).

    [32] QU Q, LIU B, LIANG J et al. Expediting hydrogen evolution through topological surface states on Bi2Te3[J]. ACS Catalysis, 1656(2020).

    [33] SHARMA P A, OHTA T, BRUMBACH M T et al. Ex Situ photoelectron emission microscopy of polycrystalline bismuth and antimony telluride surfaces exposed to ambient oxidation[J]. Applied Materials & Interfaces, 18218(2021).

    [34] LU B, HU S, LI W E et al. Preparation and characterization of Sb2Te3 thin films by coevaporation[J]. International Journal of Photoenergy, 476589(2010).

    [36] LI A, NAN P, WANG Y et al. Chemical stability and degradation mechanism of Mg3Sb2-Bi thermoelectrics towards room-temperature applications[J]. Acta Materialia, 118301(2022).

    [37] ZHAO Y, BURDA C. Chemical synthesis of Bi(0.5)Sb(1.5)Te3 nanocrystals and their surface oxidation properties[J]. ACS Applied Materials & Interfaces, 1259(2009).

    [38] JEONG K, PARK D, MAENG I et al. Modulation of optoelectronic properties of the Bi2Te3nanowire by controlling the formation of selective surface oxidation[J]. Applied Surface Science, 149069(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yani XIAO, Jianan LYU, Zhenming LI, Mingyang LIU, Wei LIU, Zhigang REN, Hongjing LIU, Dongwang YANG, Yonggao YAN. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 5, 2022

    Accepted: --

    Published Online: Dec. 28, 2023

    The Author Email: Dongwang YANG (ydongwang@whut.edu.cn), Yonggao YAN (yanyonggao@whut.edu.cn)

    DOI:10.15541/jim20220736

    Topics