Optics and Precision Engineering, Volume. 32, Issue 10, 1622(2024)

Computer motherboard assembly defect detection using parallel feature extraction and progressive feature fusion

Junying CHEN... Zhaoyang LI*, Hantao HUANG and Xuze DONG |Show fewer author(s)
Author Affiliations
  • School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an710055, China
  • show less
    References(25)

    [1] [1] 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47(5): 1017-1034.TAOX, HOUW, XUD. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034.(in Chinese)

    [2] [2] 卞佰成, 陈田, 吴入军, 等. 基于改进YOLOv3的印刷电路板缺陷检测算法[J]. 浙江大学学报(工学版), 2023, 57(4): 735-743.BIANB C, CHENT, WUR J, et al. Improved YOLOv3-based defect detection algorithm for printed circuit board[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(4): 735-743.(in Chinese)

    [3] [3] 陈亚芳, 廖飞, 黄新宇, 等. 多尺度YOLOv5的太阳能电池缺陷检测[J]. 光学 精密工程, 2023, 31(12): 1804-1815. doi: 10.37188/OPE.20233112.1804CHENY F, LIAOF, HUANGX Y, et al. Multi-scale YOLOv5 for solar cell defect detection[J]. Opt. Precision Eng., 2023, 31(12): 1804-1815.(in Chinese). doi: 10.37188/OPE.20233112.1804

    [4] [4] 李可, 吴忠卿, 吉勇, 等. 改进U-Net芯片X线图像焊缝气泡缺陷检测方法[J]. 华中科技大学学报(自然科学版), 2022, 50(6): 104-110. doi: 10.13245/j.hust.220613LIK, WUZ Q, JIY, et al. Detection method of weld bubble defect in chip X-ray image based on improved U-Net network[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(6): 104-110.(in Chinese). doi: 10.13245/j.hust.220613

    [5] [5] 沈宗礼, 余建波. 基于迁移学习与深度森林的晶圆图缺陷识别[J]. 浙江大学学报(工学版), 2020, 54(6): 1228-1239.SHENZ L, YUJ B. Wafer map defect recognition based on transfer learning and deep forest[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(6): 1228-1239.(in Chinese)

    [6] G M TU, J H QIN, N XIONG. Algorithm of computer mainboard quality detection for real-time based on QD-YOLO. Electronics, 11, 2424(2022).

    [7] [7] 陈仁祥, 詹赞, 胡小林, 等. 基于多注意力Faster RCNN的噪声干扰下印刷电路板缺陷检测[J]. 仪器仪表学报, 2021, 42(12): 167-174.CHENR X, ZHANZ, HUX L, et al. Printed circuit board defect detection based on the multi-attentive faster RCNN under noise interference[J]. Chinese Journal of Scientific Instrument, 2021, 42(12): 167-174.(in Chinese)

    [8] J X LUO, Z Y YANG, S P LI et al. FPCB surface defect detection: a decoupled two-stage object detection framework. IEEE Transactions on Instrumentation and Measurement. IEEE, 1-11(2021).

    [9] V A ADIBHATLA, H C CHIH, C C HSU et al. Applying deep learning to defect detection in printed circuit boards via a newest model of you-only-look-once. Mathematical Biosciences and Engineering: MBE, 18, 4411-4428(2021).

    [12] [12] 李彬, 汪诚, 丁相玉, 等. 改进YOLOv4的表面缺陷检测算法[J]. 北京航空航天大学学报, 2023, 49(3): 710-717.LIB, WANGC, DINGX Y, et al. Surface defect detection algorithm based on improved YOLOv4[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 710-717.(in Chinese)

    [13] [13] 潘睿志, 林涛, 李超, 等. 基于深度学习的多尺寸汽车轮辋焊缝检测与定位系统研究[J]. 光学 精密工程, 2023, 31(8): 1174-1187. doi: 10.37188/OPE.20233108.1174PANR Z, LINT, LIC, et al. Research on multi size automobile rim weld detection and positioning system based on depth learning[J]. Opt. Precision Eng., 2023, 31(8): 1174-1187.(in Chinese). doi: 10.37188/OPE.20233108.1174

    [14] [14] 郭峰, 朱启兵, 黄敏, 等. 基于改进YOLOV4的陶瓷基板瑕疵检测[J]. 光学 精密工程, 2022, 30(13): 1631-1641. doi: 10.37188/OPE.20223013.1631GUOF, ZHUQ B, HUANGM, et al. Defect detection in ceramic substrate based on improved YOLOV4[J]. Opt. Precision Eng., 2022, 30(13): 1631-1641.(in Chinese). doi: 10.37188/OPE.20223013.1631

    [15] J R CHEN, S H KAO, H HE et al. Run Don't Walk Chasing Higher FLOPS for Faster Neural Networks, 12021-12031(2023).

    [17] K HAN, Y H WANG, Q TIAN et al. GhostNet: more features from cheap operations, 1577-1586(2020).

    [18] T Y LIN, P DOLLÁR, R GIRSHICK et al. Feature pyramid networks for object detection, 936-944(2017).

    [19] S LIU, L QI, H F QIN et al. Path aggregation network for instance segmentation, 8759-8768(2018).

    [20] G Y YANG, J LEI, Z K ZHU et al. AFPN: asymptotic feature pyramid network for object detection, 2184-2189(2023).

    [21] [21] 孙备, 党昭洋, 吴鹏, 等. 多尺度互交叉注意力改进的单无人机对地伪装目标检测定位方法[J]. 仪器仪表学报, 2023, 44(6): 54-65.SUNB, DANGZ Y, WUP, et al. Multi scale cross attention improved method of single unmanned aerial vehicle for ground camouflage target detection and localization[J]. Chinese Journal of Scientific Instrument, 2023, 44(6): 54-65.(in Chinese)

    [23] [23] 周中, 张俊杰, 鲁四平. 基于改进YOLOv4的隧道衬砌裂缝检测算法[J]. 铁道学报, 2023, 45(10): 162-170. doi: 10.3969/j.issn.1001-8360.2023.10.019ZHOUZ, ZHANGJ J, LUS P. Tunnel lining crack detection algorithm based on improved YOLOv4[J]. Journal of the China Railway Society, 2023, 45(10): 162-170.(in Chinese). doi: 10.3969/j.issn.1001-8360.2023.10.019

    [24] J G DING, W LI, L L PEI et al. Sw-YoloX: an anchor-free detector based transformer for sea surface object detection. Expert Systems with Applications, 217, 119560(2023).

    [25] H F WANG, Z F WANG, M N DU et al. Score-CAM: score-weighted visual explanations for convolutional neural networks, 111-119(2020).

    Tools

    Get Citation

    Copy Citation Text

    Junying CHEN, Zhaoyang LI, Hantao HUANG, Xuze DONG. Computer motherboard assembly defect detection using parallel feature extraction and progressive feature fusion[J]. Optics and Precision Engineering, 2024, 32(10): 1622

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 8, 2023

    Accepted: --

    Published Online: Jul. 8, 2024

    The Author Email: LI Zhaoyang (nicholas@xauat.edu.cn)

    DOI:10.37188/OPE.20243210.1622

    Topics