Optics and Precision Engineering, Volume. 32, Issue 6, 765(2024)
Modeling and experimental verification of backscatter secondary wave of photonic bandgap fiber
[1] [1] 沈威, 徐许, 高宏伟, 等. 氮化镓基异质结构光子晶体微腔特性研究[J]. 光学 精密工程, 2022, 30(24): 3097-3104. doi: 10.37188/ope.20223024.3097SHENW, XUX, GAOH W, et al. Study on the characteristics of Gallium Nitride based hetero-structure photonic crystal micro-cavity[J]. Opt. Precision Eng., 2022, 30(24): 3097-3104.(in Chinese). doi: 10.37188/ope.20223024.3097
[2] [2] 王亚捷, 侯尚林, 雷景丽. C+L波段低损耗色散补偿19芯光子晶体光纤设计[J]. 光学 精密工程, 2022, 30(22): 2860-2868. doi: 10.37188/ope.20223022.2860WANGY J, HOUS L, LEIJ L. Design of 19-core photonic crystal fiber with low loss dispersion compensation in C+L band[J]. Opt. Precision Eng., 2022, 30(22): 2860-2868.(in Chinese). doi: 10.37188/ope.20223022.2860
[3] M J F DIGONNET, H K KIM, G S KINO et al. Understanding air-core photonic-bandgap fibers: analogy to conventional fibers. Journal of Lightwave Technology, 23, 4169-4177(2005).
[4] TP HANSEN, J BROENG, AO BJARKLEV. Macrobending loss in air-guiding photonic crystal fibres, 484-485(2003).
[5] X B XU, Z C ZHANG, Z H ZHANG et al. Investigation of residual core ellipticity induced nonreciprocity in air-core photonic bandgap fiber optical gyroscope. Optics Express, 22, 27228-27235(2014).
[6] [6] 刘旭, 刘波, 饶云江. 基于单光子探测的光子计数光时域反射仪研究进展[J]. 光学 精密工程, 2023, 31(2): 168-182. doi: 10.37188/OPE.20233102.0168LIUX, LIUB, RAOY J. Research progress of photon counting optical time domain reflectometry based on single photon detection[J]. Opt. Precision Eng., 2023, 31(2): 168-182.(in Chinese). doi: 10.37188/OPE.20233102.0168
[7] E N FOKOUA, F POLETTI, D J RICHARDSON. Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers. Optics Express, 20, 20980-20991(2012).
[8] N F E RODRIGUE.
[9] V DANGUI, M J F DIGONNET, G S KINO. Modeling of the propagation loss and backscattering in air-core photonic-bandgap fibers. Journal of Lightwave Technology, 27, 3783-3789(2009).
[10] V DANGUI, M J F DIGONNET, G S KINO. A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers. Optics Express, 14, 2979(2006).
[11] E NUMKAM, F POLETTI, D J RICHARDSON. Dipole radiation model for surface roughness scattering in Hollow-Core fibers, 1-3(2012).
[12] J D JACKSON. Classical Electrodynamics(1998).
[13] J D JOANNOPOULOS. Photonic Crystals: Molding the Flow of Light(2008).
[14] B DEBORD, F AMRANI, L VINCETTI et al. Hollow-core fiber technology: the rising of “gas photonics”. Fibers, 7, 16(2019).
[15] K ZAMANI AGHAIE, M J F DIGONNET, S H FAN. Experimental assessment of the accuracy of an advanced photonic-bandgap-fiber model. Journal of Lightwave Technology, 31, 1015-1022(2013).
[16] A PEYRILLOUX, S FÉVRIER, J MARCOU et al. Comparison between the finite element method, the localized function method and a novel equivalent averaged index method for modelling photonic crystal fibres. Journal of Optics A: Pure and Applied Optics, 4, 257-262(2002).
[17] A CUCINOTTA, S SELLERI, L VINCETTI et al. Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method. Journal of Lightwave Technology, 20, 1433-1442(2002).
[18] P ROBERTS, F COUNY, H SABERT et al. Ultimate low loss of hollow-core photonic crystal fibres. Optics Express, 13, 236-244(2005).
[19] J JACKLE, K KAWASAKI. Intrinsic roughness of glass surfaces. Journal of Physics: Condensed Matter, 7, 4351-4358(1995).
[20] R BRÜCKNER. Properties and structure of vitreous silica. I. Journal of Non-Crystalline Solids, 5, 123-175(1970).
[21] N P BANSAL, R H DOREMUS. Handbook of Glass Properties(1986).
[22] M C PHAN-HUY, J M MOISON, J A LEVENSON et al. Surface roughness and light scattering in a small effective area microstructured fiber. Journal of Lightwave Technology, 27, 1597-1604(2009).
[23] O BENNINGSHOF, D NGUYEN, M DADEMA et al. Characterization of the channel walls roughness in photonic crystal fibers. Physica E: Low-Dimensional Systems and Nanostructures, 66, 33-39(2015).
[24] [24] 陈建超. 超精密加工表面粗糙度测量方法对比及功率谱密度评价[D]. 哈尔滨: 哈尔滨工业大学, 2009.CHENJ C. Comparison of Ultra-Precision Machined Surface Roughness Measurement Methods and Power Spectral Density Characterization[D].Harbin: Harbin Institute of Technology, 2009. (in Chinese)
[25] [25] 姚天任, 江太辉著. 数字信号处理[M]. 2版. 武汉: 华中理工大学出版社, 2000.YAOT R, JIANGT H. Digital Signal Processing[M]. Wuhan: Huazhong University of Science and Technology Press, 2000. (in Chinese)
[26] KZ AGHAIE, MJ DIGONNET, S FAN. Modeling loss and backscattering in a photonic-bandgap fiber using strong perturbation, 100-106(2013).
Get Citation
Copy Citation Text
Xiaoyang WANG, fei TENG, Xiaobin XU, Qiwei WANG, Xiaona ZHOU, Yanan TIAN, Guanying MA, Yong LI. Modeling and experimental verification of backscatter secondary wave of photonic bandgap fiber[J]. Optics and Precision Engineering, 2024, 32(6): 765
Category:
Received: Sep. 6, 2023
Accepted: --
Published Online: Apr. 19, 2024
The Author Email: TENG fei (tengfei0337@126.com)