Optical Communication Technology, Volume. 47, Issue 6, 21(2023)

Novel Terahertz anti-resonant fiber based on positive curvature regulation of cladding tube

ZHANG Yuzhuo and XIAO Qingsheng
Author Affiliations
  • [in Chinese]
  • show less
    References(27)

    [1] [1] ZHAO S T, ZHANG Y H, QIU Z J, et al. Towards a fast and generalized microplastic quantification method in soil using terahertz spectroscopy [J]. Science of the Total Environment, 2022, 841: 156624-1-156624-13.

    [2] [2] CHEN S Y, REED D J, MACKELLAR A R, et al. Terahertz electrometry via infrared spectroscopy of atomic vapor [J]. Optica, 2022, 9(5): 485-491.

    [3] [3] CASTRO-CAMUS E, KOCH M, MITTLEMAN D M. Recent advances in terahertz imaging[EB/OL]. [2023-03-14]. https://link.springer.com/article/10.1007/s00340-021-07732-4.

    [4] [4] ISLAM M S, SULTANA J, BIABANIFARD M, et al. Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing [J]. Carbon, 2020, 158: 559-567.

    [5] [5] O'HARA J F, EKIN S, CHOI W, et al. A perspective on Terahertz next-generation wireless communications[J]. Technologies, 2019, 7(2): 7020043-1-7020043-18.

    [6] [6] ISLAM M S, CORDEIRO C M B, FRANCO M A R, et al. Terahertz optical fibers [Invited][J]. Optics Express, 2020, 28(11): 16089-16117.

    [9] [9] GOTO M, QUEMA A, TAKAHASHI H, et al. Teflon photonic crystal fiber as Terahertz waveguide[J]. Japanese Journal of Applied Physics, 2004, 43(No. 2B): L317-L319.

    [10] [10] NIELSEN K, RASMUSSEN H K, ADAM A J L, et al. Bendable, low-loss Topas fibers for the terahertz frequency range[J]. Optics Express, 2009, 17(10): 8592-8601.

    [11] [11] AHMED K, CHOWDHURY S, PAUL B K, et al. Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for Terahertz wave guidance [J]. Applied Optics, 2017, 56(12): 3477-3483.

    [12] [12] LI S, DAI Z, WANG Z, et al. A 0.1 THz low-loss 3D printed hollow waveguide [J]. Optik, 2019, 176: 611-616.

    [13] [13] YANG S, SHENG X, ZHAO G, et al. Anti-deformation low loss double pentagon nested terahertz hollow core fiber [J]. Optical Fiber Technology, 2020, 56: 102199-1-102199-7.

    [14] [14] HABIB M S, BANG O, BACHE M. Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements[J]. Optics Express, 2016, 24(8): 8429-8436.

    [15] [15] LITCHINITSER N M, ABEELUCK A K, HEADLEY C, et al. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 2002, 27(18): 1592-1594.

    [16] [16] LAI C H, HSUEH Y C, CHEN H W, et al. Low-index terahertz pipe waveguides[J]. Optics Letters, 2009, 34(21): 3457-3459.

    [18] [18] VINCETTI L, SETTI V. Elliptical hollow core tube lattice fibers for terahertz applications [J]. Optical Fiber Technology, 2013, 19(1): 31-34.

    [19] [19] MENG M, YAN D, YUAN Z, et al. Novel double negative curvature elliptical aperture core fiber for Terahertz wave transmission[EB/OL]. [2023-03-14]. https://iopscience.iop.org/article/10.1088/1361-6463/abed6d.

    [20] [20] ISLAM M S, CORDEIRO C M B, NINE M J, et al. Experimental study on glass and polymers: determining the optimal material for potential use in Terahertz technology [J]. IEEE Access, 2021, 9: 2705-2705.

    [21] [21] TALATAISONG W, GORECKI J, VAN PUTTEN L D, et al. Hollow-core antiresonant terahertz fiber-based TOPAS extruded from a 3D printer using a metal 3D printed nozzle[J]. Photonics Research, 2021, 9(8): 1513-1521.

    [22] [22] YU F, KNIGHT J C. Negative curvature hollow-core optical fiber [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 4400610-1-4400610-10.

    [23] [23] WEI C L, WEIBLEN R J, MENYUK C R, et al. Negative curvature fibers[J]. Advances In Optics And Photonics, 2017, 9(3): 504-561.

    [25] [25] POLETTI F. Nested antiresonant nodeless hollow core fiber[J]. Optics Express, 2014, 22(20): 23807-23828.

    [26] [26] HAN Y, DONG T T, QING Y, et al. Low loss hollow-core anti-resonant fiber in infrared band [J]. Journal of Infrared And Millimeter Waves, 2020, 39(1): 32-38.

    [27] [27] ZHONG K, SHI W, XU D G, et al. Optically pumped terahertz sources [J]. Science China-technological Sciences, 2017, 60(12): 1801-1818.

    [28] [28] GENG L J, ZHANG R L, ZHANG Z F, et al. Study of lasing action in a pulsed optically pumped D2O gas Terahertz laser[J]. Journal of Infrared Millimeter and Terahertz Waves, 2018, 39(12): 1175-1184.

    [29] [29] POGGIOLINI P, POLETTI F. Opportunities and challenges for long-distance transmission in hollow-core fibres[J]. Journal of Lightwave Technology, 2022, 40(6): 1605-1616.

    [30] [30] ALIA O, TESSINARI R S, BAHRANI S, et al. DV-QKD coexistence with 1.6 tbps classical channels over hollow core fibre[J]. Journal of Lightwave Technology, 2022, 40(16): 5522-5529.

    [31] [31] HABIB M S, ANTONIO-LOPEZ J E, MARKOS C, et al. Single-mode, low loss hollow-core anti-resonant fiber designs[J]. Optics Express, 2019, 27(4): 3824-3836.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Yuzhuo, XIAO Qingsheng. Novel Terahertz anti-resonant fiber based on positive curvature regulation of cladding tube[J]. Optical Communication Technology, 2023, 47(6): 21

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 14, 2023

    Accepted: --

    Published Online: Feb. 2, 2024

    The Author Email:

    DOI:10.13921/j.cnki.issn1002-5561.2023.06.005

    Topics