Acta Photonica Sinica, Volume. 41, Issue 8, 903(2012)

Sequence Image Mosaic Based on Approximate Scale Invariant Feature Transform Descriptors

CHEN Ai-hua*... YANG Ben-quan and ZHANG Shi-qing |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(16)

    [1] [1] FIALA M. Structure from motion using SIFT features and the PH transform with panoramic imagery[C]. Canadian Conference on Computer and Robot Vision(CRV), Ottawa, Canada, 2005: 506-513.

    [2] [2] SU Ming-shing, HWANG Wen-liang, CHENG Kuo-young. Analysis on multire solution mosaic images[J]. Transactions on Image Processing, 2004, 13(7): 952-959.

    [3] [3] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

    [4] [4] SE S, LOWE D, LITTLE J. Vision-based mobile robot localization and mapping using scale-invariant features[C]. Proceedings of the IEEE International Conference on Robotics and Automation(ICRA), Seoul, Korea, 2001: 2051-2058.

    [5] [5] SE S, LOWE D, LITTLE J. Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks[J]. International Journal of Robotics Research, 2002, 21(8): 735-758.

    [6] [6] ANDREASSON H, TREPTOW A, DUCKETT T. Localization for mobile robots using panoramic vision, local features and particle filter[C]. IEEE International Conference on Robotics and Automation(ICRA), Barcelona, Spain, 2005: 3348-3353.

    [7] [7] ANDREASSON H, DUCKETT T. Topological localization for mobile robots using omni-directional vision and local features[C]. the 5th IFAC Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, 2004: 3348-3353.

    [8] [8] VALGREN C, DUCKETT T, LILIENTHAL A. Incremental spectral clustering and its application to topological mapping[C]. Proceedings of the IEEE International Conference on Robotics and Automation(ICRA), Rome, Italy, 2007: 4283-4288.

    [9] [9] ABDEL-HAKIM A E, FARAG A A. CSIFT: a SIFT descriptor with color invariant characteristics[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY, USA, 2006: 1978-1983.

    [10] [10] KE Y, SUTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptors[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, 2004: 511–517.

    [11] [11] LIU Li, PENG Fu-yuan, TIAN Yan, et al. Fast image matching for localization in deep-sea based on the simplified SIFT (scale invariant feature transform) algorithm[C]. SPIE, 2007, 6795: 67953A.

    [12] [12] MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.

    [13] [13] BAY H, ESS A, TUYTELAARS T, et al. SURF: speeded up robust features[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.

    [14] [14] BAY H, FASEL B, GOOL L.V. Interactive museum guide: Fast and robustrecognition of museum objects[C]. Proceedings of International Workshop on Mobile Vision, Graz, Austria, 2006.

    [15] [15] MURILLO A C, GUERRERO J J, SAGUES C. SURF features for efficient robot localization with omnidirectional images[C]. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Rome, Italy, 2007: 3901-3907.

    [16] [16] DENG Cheng, GAO Xin-bo. Geometrically robust image watermarking based on SIFT feature regions[J]. Acta Photonica Sinica, 2009, 38(4): 1005-1010.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Ai-hua, YANG Ben-quan, ZHANG Shi-qing. Sequence Image Mosaic Based on Approximate Scale Invariant Feature Transform Descriptors[J]. Acta Photonica Sinica, 2012, 41(8): 903

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jan. 9, 2012

    Accepted: --

    Published Online: Aug. 15, 2012

    The Author Email: Ai-hua CHEN (chen_1216@163.com)

    DOI:10.3788/gzxb20124108.0903

    Topics