Laser & Optoelectronics Progress, Volume. 60, Issue 9, 0900002(2023)

Application of Transition Metal Doping in Perovskite Photovoltaic Devices

Wenzhen Zou1, Chu Zhang1, Hongmin Jiang1, Liguo Gao2, Meiqiang Fan1, and Tingli Ma1、*
Author Affiliations
  • 1College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, Zhejiang, China
  • 2School of Chemical Engineering, Dalian University of Technology, Panjin 116086, Liaoning, China
  • show less
    References(106)

    [1] Dou L T, Yang Y, You J B et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nature Communications, 5, 5404(2014).

    [2] Wei H T, Fang Y J, Mulligan P et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 10, 333-339(2016).

    [3] Bao C, Chen Z, Fang Y et al. Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals[J]. Advanced Materials, 29, 1703209(2017).

    [4] Lin K B, Xing J, Quan L N et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent[J]. Nature, 562, 245-248(2018).

    [5] Cao Y, Wang N N, Tian H et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures[J]. Nature, 562, 249-253(2018).

    [6] Jiang Q, Zhao Y, Zhang X W et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 13, 460-466(2019).

    [7] Seo J, Noh J H, Seok S I. Rational strategies for efficient perovskite solar cells[J]. Accounts of Chemical Research, 49, 562-572(2016).

    [8] Kojima A, Teshima K, Shirai Y et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 131, 6050-6051(2009).

    [9] Kim M, Jeong J, Lu H Z et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells[J]. Science, 375, 302-306(2022).

    [10] Dong Q F, Fang Y J, Shao Y C et al. Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 347, 967-970(2015).

    [11] Shi D, Adinolfi V, Comin R et al. Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 347, 519-522(2015).

    [12] Hu M, Bi C, Yuan Y B et al. Stabilized wide bandgap MAPbBrxI3-x perovskite by enhanced grain size and improved crystallinity[J]. Advanced Science, 3, 1500301(2016).

    [13] Zhao B, Abdi-Jalebi M, Tabachnyk M et al. High open-circuit voltages in tin-rich low-bandgap perovskite-based planar heterojunction photovoltaics[J]. Advanced Materials, 29, 1604744(2017).

    [14] Walsh A. Principles of chemical bonding and band gap engineering in hybrid organic-inorganic halide perovskites[J]. The Journal of Physical Chemistry C, 119, 5755-5760(2015).

    [15] Richter J M, Abdi-Jalebi M, Sadhanala A et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling[J]. Nature Communications, 7, 13941(2016).

    [16] Shin S S, Yang W S, Noh J H et al. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 ℃[J]. Nature Communications, 6, 7410(2015).

    [17] Yong Z J, Guo S Q, Ma J P et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield[J]. Journal of the American Chemical Society, 140, 9942-9951(2018).

    [18] Chen Z, Wang J J, Ren Y H et al. Schottky solar cells based on CsSnI3 thin-films[J]. Applied Physics Letters, 101, 093901(2012).

    [19] Yoon S M, Min H, Kim J B et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells[J]. Joule, 5, 183-196(2021).

    [20] Gu X J, Xiang W C, Tian Q W et al. Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells[J]. Angewandte Chemie (International Ed. in English), 60, 23164-23170(2021).

    [21] Beal R E, Slotcavage D J, Leijtens T et al. Cesium lead halide perovskites with improved stability for tandem solar cells[J]. The Journal of Physical Chemistry Letters, 7, 746-751(2016).

    [22] Swarnkar A, Mir W J, Nag A. Can B-site doping or alloying improve thermal-and phase-stability of all-inorganic CsPbX3 (X=Cl, Br, I) perovskites?[J]. ACS Energy Letters, 3, 286-289(2018).

    [23] Wang Z, Shi Z J, Li T T et al. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion[J]. Angewandte Chemie (International Ed. in English), 56, 1190-1212(2017).

    [24] Bu T L, Liu X P, Zhou Y et al. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells[J]. Energy & Environmental Science, 10, 2509-2515(2017).

    [25] Shai X X, Zuo L J, Sun P Y et al. Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite[J]. Nano Energy, 36, 213-222(2017).

    [26] Chen Q, Zhou H P, Song T B et al. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells[J]. Nano Letters, 14, 4158-4163(2014).

    [27] Guo Y G, Wang Q, Saidi W A. Structural stabilities and electronic properties of high-angle grain boundaries in perovskite cesium lead halides[J]. The Journal of Physical Chemistry C, 121, 1715-1722(2017).

    [28] Bai D L, Zhang J R, Jin Z W et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells[J]. ACS Energy Letters, 3, 970-978(2018).

    [29] Yao Z, Zhao W G, Chen S J et al. Mn doping of CsPbI3 film towards high-efficiency solar cell[J]. ACS Applied Energy Materials, 3, 5190-5197(2020).

    [30] Tang M X, He B L, Dou D W et al. Toward efficient and air-stable carbon-based all-inorganic perovskite solar cells through substituting CsPbBr3 films with transition metal ions[J]. Chemical Engineering Journal, 375, 121930(2019).

    [31] Saidaminov M I, Kim J, Jain A et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air[J]. Nature Energy, 3, 648-654(2018).

    [32] Liu W, Chu L, Liu N J et al. Efficient perovskite solar cells fabricated by manganese cations incorporated in hybrid perovskites[J]. Journal of Materials Chemistry C, 7, 11943-11952(2019).

    [33] Frolova L A, Anokhin D V, Gerasimov K L et al. Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 7, 4353-4357(2016).

    [34] Klug M T, Osherov A, Haghighirad A A et al. Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties[J]. Energy & Environmental Science, 10, 236-246(2017).

    [35] Almutawah Z S, Watthage S C, Song Z N et al. Enhanced grain size and crystallinity in CH3NH3PbI3 perovskite films by metal additives to the single-step solution fabrication process[J]. MRS Advances, 3, 3237-3242(2018).

    [36] Abdi-Jalebi M, Pazoki M, Philippe B et al. Dedoping of lead halide perovskites incorporating monovalent cations[J]. ACS Nano, 12, 7301-7311(2018).

    [37] Pazoki M, Jacobsson T J, Hagfeldt A et al. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: replacement of lead with alkaline-earth metals[J]. Physical Review B, 93, 144105(2016).

    [38] Akin S. Boosting the efficiency and stability of perovskite solar cells through facile molecular engineering approaches[J]. Solar Energy, 199, 136-142(2020).

    [39] Shalan A E, Sharmoukh W, Elshazly A N et al. Dopant-free hole-transporting polymers for efficient, stable, and hysteresis-less perovskite solar cells[J]. Sustainable Materials and Technologies, 26, e00226(2020).

    [40] Zaki A H, Shalan A E, El-Shafeay A et al. Acceleration of ammonium phosphate hydrolysis using TiO2 microspheres as a catalyst for hydrogen production[J]. Nanoscale Advances, 2, 2080-2086(2020).

    [41] Rashad M M, Shalan A E. Hydrothermal synthesis of hierarchical WO3 nanostructures for dye-sensitized solar cells[J]. Applied Physics A, 116, 781-788(2014).

    [42] Shalan A E, Rashad M M, Yu Y H et al. Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells[J]. Electrochimica Acta, 89, 469-478(2013).

    [43] Elseman A M, Zaki A H, Shalan A E et al. TiO2 nanotubes: an advanced electron transport material for enhancing the efficiency and stability of perovskite solar cells[J]. Industrial & Engineering Chemistry Research, 59, 18549-18557(2020).

    [44] Elseman A M, Sajid S, Shalan A E et al. Recent progress concerning inorganic holetransport layers for efficient perovskite solar cells[J]. Applied Physics A, 125, 476(2019).

    [45] Sh Atabaev T. Stable HTM-free organohalide perovskite-based solar cells[J]. Materials Today: Proceedings, 4, 4919-4923(2017).

    [46] Olivera S, Chaitra K, Venkatesh K et al. Cerium dioxide and composites for the removal of toxic metal ions[J]. Environmental Chemistry Letters, 16, 1233-1246(2018).

    [47] Akin S, Arora N, Zakeeruddin S M et al. New strategies for defect passivation in high-efficiency perovskite solar cells[J]. Advanced Energy Materials, 10, 1903090(2020).

    [48] Mudhoo A, Paliya S, Goswami P et al. Fabrication, functionalization and performance of doped photocatalysts for dye degradation and mineralization: a review[J]. Environmental Chemistry Letters, 18, 1825-1903(2020).

    [49] Sengul A B, Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review[J]. Environmental Chemistry Letters, 18, 1659-1683(2020).

    [50] Shukla S, Oturan M A. Dye removal using electrochemistry and semiconductor oxide nanotubes[J]. Environmental Chemistry Letters, 13, 157-172(2015).

    [51] Mohammed M K A, Dehghanipour M, Younis U et al. Improvement of the interfacial contact between zinc oxide and a mixed cation perovskite using carbon nanotubes for ambient-air-processed perovskite solar cells[J]. New Journal of Chemistry, 44, 19802-19811(2020).

    [52] Akin S, Liu Y H, Dar M I et al. Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability[J]. Journal of Materials Chemistry A, 6, 20327-20337(2018).

    [53] Kim D H, Han G S, Seong W M et al. Niobium doping effects on TiO2 mesoscopic electron transport layer-based perovskite solar cells[J]. ChemSusChem, 8, 2392-2398(2015).

    [54] Rajamanickam N, Soundarrajan P, Jayakumar K et al. Improve the power conversion efficiency of perovskite BaSnO3 nanostructures based dye-sensitized solar cells by Fe doping[J]. Solar Energy Materials and Solar Cells, 166, 69-77(2017).

    [55] Chen C J, Lee W T, Hu J H et al. Structural diversity and modification in Ni(ii) coordination polymers: a peculiar phenomenon of reversible structural transformation between a 1D ladder and 2D layer[J]. CrystEngComm, 22, 7565-7574(2020).

    [56] Li M, Zhao Y L, Zhu L et al. Performance enhancement of perovskite solar cells via Nb/Ta-doped TiO2 mesoporous layers[J]. Journal of Materials Science: Materials in Electronics, 30, 9038-9044(2019).

    [57] Song J, Li S P, Zhao Y L et al. Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements[J]. Journal of Alloys and Compounds, 694, 1232-1238(2017).

    [58] Deng X L, Wang Y Q, Chen Y et al. Yttrium-doped TiO2 compact layers for efficient perovskite solar cells[J]. Journal of Solid State Chemistry, 275, 206-209(2019).

    [59] Zhou H P, Chen Q, Li G et al. Interface engineering of highly efficient perovskite solar cells[J]. Science, 345, 542-546(2014).

    [60] Sandhu S, Saharan C, Buruga S K et al. Micro structurally engineered hysteresis-free high efficiency perovskite solar cell using Zr-doped TiO2 electron transport layer[J]. Ceramics International, 47, 14665-14672(2021).

    [61] Nguyen T M H, Bark C W. Synthesis of cobalt-doped TiO2 based on metal-organic frameworks as an effective electron transport material in perovskite solar cells[J]. ACS Omega, 5, 2280-2286(2020).

    [62] Kim J K, Chai S U, Ji Y F et al. Resolving hysteresis in perovskite solar cells with rapid flame-processed cobalt-doped TiO2[J]. Advanced Energy Materials, 8, 1801717(2018).

    [63] Ren G H, Li Z W, Wu W et al. Performance improvement of planar perovskite solar cells with cobalt-doped interface layer[J]. Applied Surface Science, 507, 145081(2020).

    [64] Wang S, Liu B, Zhu Y et al. Enhanced performance of TiO2-based perovskite solar cells with Ru-doped TiO2 electron transport layer[J]. Solar Energy, 169, 335-342(2018).

    [65] Gu X L, Wang Y F, Zhang T et al. Enhanced electronic transport in Fe3+-doped TiO2 for high efficiency perovskite solar cells[J]. Journal of Materials Chemistry C, 5, 10754-10760(2017).

    [66] Liu X Y, Liu Z Y, Sun B et al. 17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer[J]. Nano Energy, 50, 201-211(2018).

    [67] Jiang L L, Wang Z K, Li M et al. Enhanced electrical property of compact TiO2 layer via platinum doping for high-performance perovskite solar cells[J]. Solar RRL, 2, 1800149(2018).

    [68] Jiang Q, Zhang X, You J. SnO2: a wonderful electron transport layer for perovskite solar cells[J]. Small, 14, 1801154(2018).

    [69] Halvani Anaraki E, Kermanpur A, Mayer M T et al. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells[J]. ACS Energy Letters, 3, 773-778(2018).

    [70] Song J, Xu X X, Wu J H et al. Low-temperature solution-processing high quality Nb-doped SnO2 nanocrystals-based electron transport layers for efficient planar perovskite solar cells[J]. Functional Materials Letters, 12, 1850091(2019).

    [71] Yang G, Lei H, Tao H et al. Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers[J]. Small, 13, 1601769(2017).

    [72] Noh Y W, Lee J H, Jin I S et al. Tailored electronic properties of Zr-doped SnO2 nanoparticles for efficient planar perovskite solar cells with marginal hysteresis[J]. Nano Energy, 65, 104014(2019).

    [73] Wang P Y, Chen B B, Li R J et al. Cobalt chloride hexahydrate assisted in reducing energy loss in perovskite solar cells with record open-circuit voltage of 1.20 V[J]. ACS Energy Letters, 6, 2121-2128(2021).

    [74] Akin S. Hysteresis-free planar perovskite solar cells with a breakthrough efficiency of 22% and superior operational stability over 2000 H[J]. ACS Applied Materials & Interfaces, 11, 39998-40005(2019).

    [75] Zang Z G, Zeng X F, Du J H et al. Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes[J]. Optics Letters, 41, 3463-3466(2016).

    [76] Zang Z G, Nakamura A, Temmyo J. Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application[J]. Optics Express, 21, 11448-11456(2013).

    [77] Chen P Y, Yang S H. Improved efficiency of perovskite solar cells based on Ni-doped ZnO nanorod arrays and Li salt-doped P3HT layer for charge collection[J]. Optical Materials Express, 6, 3651-3669(2016).

    [78] Bagha G, Naffakh-Moosavy H, Mersagh M R. The effect of reduced graphene oxide sheet on the optical and electrical characteristics of Ni-doped and Ag-doped ZnO ETLs in planar perovskite solar cells[J]. Journal of Alloys and Compounds, 870, 159658(2021).

    [79] Xing G C, Mathews N, Sun S Y et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 342, 344-347(2013).

    [80] Steim R, Kogler F R, Brabec C J. Interface materials for organic solar cells[J]. Journal of Materials Chemistry, 20, 2499-2512(2010).

    [81] Yip H L, Huang F, Jen A. Interface engineering for organic electronics[J]. Advanced Functional Materials, 20, 1371-1388(2010).

    [82] Schäfer S, Petersen A, Wagner T A et al. Influence of the indium tin oxide/organic interface on open-circuit voltage, recombination, and cell degradation in organic small-molecule solar cells[J]. Physical Review B, 83, 165311(2011).

    [83] Xu Y Z, Shi J J, Lv S T et al. Simple way to engineer metal-semiconductor interface for enhanced performance of perovskite organic lead iodide solar cells[J]. ACS Applied Materials & Interfaces, 6, 5651-5656(2014).

    [84] Cao J, Mo S G, Jing X J et al. Trace surface-clean palladium nanosheets as a conductivity enhancer in hole-transporting layers to improve the overall performances of perovskite solar cells[J]. Nanoscale, 8, 3274-3277(2016).

    [85] Kakavelakis G, Alexaki K, Stratakis E et al. Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer[J]. RSC Advances, 7, 12998-13002(2017).

    [86] Ai L, Fang G J, Yuan L Y et al. Influence of substrate temperature on electrical and optical properties of p-type semitransparent conductive nickel oxide thin films deposited by radio frequency sputtering[J]. Applied Surface Science, 254, 2401-2405(2008).

    [87] Kim J H, Liang P W, Williams S T et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer[J]. Advanced Materials, 27, 695-701(2015).

    [88] Jung J W, Chueh C C, Jen A K Y. A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells[J]. Advanced Materials, 27, 7874-7880(2015).

    [89] Chandrasekhar P S, Seo Y H, Noh Y J et al. Room temperature solution-processed Fe doped NiOx as a novel hole transport layer for high efficient perovskite solar cells[J]. Applied Surface Science, 481, 588-596(2019).

    [90] Chen W, Wu Y H, Fan J et al. Understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells[J]. Advanced Energy Materials, 8, 1703519(2018).

    [91] Liu Y, Song J, Qin Y S et al. Cu-doped nickel oxide hole transporting layer via efficient low-temperature spraying combustion method for perovskite solar cells[J]. Journal of Materials Science: Materials in Electronics, 30, 15627-15635(2019).

    [92] Feng M L, Wang M, Zhou H P et al. High-efficiency and stable inverted planar perovskite solar cells with pulsed laser deposited Cu-doped NiOx hole-transport layers[J]. ACS Applied Materials & Interfaces, 12, 50684-50691(2020).

    [93] Jae W J, Chu C C, Alex K Y J et al. A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells[J]. Advanced Materials, 27, 7874-7880(2015).

    [94] Wei Y, Yao K, Wang X F et al. Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer[J]. Applied Surface Science, 427, 782-790(2018).

    [95] Hu Z J, Chen D, Yang P et al. Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance[J]. Applied Surface Science, 441, 258-264(2018).

    [96] Lee J H, Noh Y W, Jin I S et al. Efficient planar heterojunction perovskite solar cells employing a solution-processed Zn-doped NiOx hole transport layer[J]. Electrochimica Acta, 284, 253-259(2018).

    [97] Ouyang D, Chen C, Huang Z F et al. Hybrid 3D nanostructure-based hole transport layer for highly efficient inverted perovskite solar cells[J]. ACS Applied Materials & Interfaces, 13, 16611-16619(2021).

    [98] Kotta A, Seo H K. Effect of V-incorporated NiO hole transport layer on the performance of inverted perovskite solar cells[J]. Materials Proceedings, 4, 21(2021).

    [99] Im K, Heo J H, Im S H et al. Scalable synthesis of Ti-doped MoO2 nanoparticle-hole-transporting-material with high moisture stability for CH3NH3PbI3 perovskite solar cells[J]. Chemical Engineering Journal, 330, 698-705(2017).

    [100] Heo J H, Im K, Lee H J et al. Ni, Ti-co-doped MoO2 nanoparticles with high stability and improved conductivity for hole transporting material in planar metal halide perovskite solar cells[J]. Journal of Industrial and Engineering Chemistry, 94, 376-383(2021).

    [101] Kaltenbrunner M, Adam G, Głowacki E D et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air[J]. Nature Materials, 14, 1032-1039(2015).

    [102] Qin P L, Lei H W, Zheng X L et al. Copper-doped chromium oxide hole-transporting layer for perovskite solar cells: interface engineering and performance improvement[J]. Advanced Materials Interfaces, 3, 1500799(2016).

    [103] Ding N, Wang N, Liu S et al. Research progress on doped perovskite materials[J]. Laser & Optoelectronics Progress, 58, 1516011(2021).

    [104] Liu Z Y, Qiao X S, Fan X P. Research progress on spectral conversion materials for solar cells[J]. Laser & Optoelectronics Progress, 58, 1516010(2021).

    [105] Liu H R, Yan X, Yuan X G et al. Solar cells based on bottom-reflectivity-enhanced GaAs radial p-i-n junction nanowire array[J]. Acta Optica Sinica, 41, 2013001(2021).

    [106] Chen C F, Zheng Y, Fang C L. Improvement of luminescence efficiency and stability of CsPbBr3 quantum dot films with microlens array structure[J]. Chinese Journal of Lasers, 48, 1313001(2021).

    Tools

    Get Citation

    Copy Citation Text

    Wenzhen Zou, Chu Zhang, Hongmin Jiang, Liguo Gao, Meiqiang Fan, Tingli Ma. Application of Transition Metal Doping in Perovskite Photovoltaic Devices[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0900002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jan. 25, 2022

    Accepted: Mar. 9, 2022

    Published Online: Apr. 24, 2023

    The Author Email: Ma Tingli (matingli123@cjlu.edu.com)

    DOI:10.3788/LOP220620

    Topics