Journal of the Chinese Ceramic Society, Volume. 50, Issue 4, 966(2022)
Optical Thermometry Based on Fluorescence Intensity Ratio in Dual-Phases Glass Ceramics Containing LiYF4: Ln3+(Ln=Tb, Dy) and ZnAl2O4: Cr3+ Nanocrystals
[1] [1] VETRONE F, NACCACHE R, ZAMARRON A, et al. Temperature sensing using fluorescent nanothermometers[J]. ACS Nano, 2010, 4(6): 3254-3258.
[2] [2] WANG X D, WOLFBEIS O S, MEIER R J. Luminescent probes and sensors for temperature[J]. Chem Soc Rev, 2013, 42(19): 7834-7869.
[3] [3] WANF X F, LIU Q, BU Y Y, et al. Optical temperature sensing of rare-earth ion doped phosphors[J]. RSC Adv, 2015, 5(105): 86219-86236.
[4] [4] FISCHER L H, HARMS G S, WOLFBEIS O S. Upconverting nanoparticles for nanoscale thermometry[J]. Angew Chem Int Ed, 2011, 50(20): 4546-4551.
[5] [5] ZHONG J S, CHEN D Q, PENG Y Z, et al. A review on nanostructured glass ceramics for promising application in optical thermometry[J]. J Alloys Compd, 2018, 763: 34-48.
[6] [6] WANG X F, LIU Q, BU Y Y, et al. Optical temperature sensing of rare-earth ion doped phosphors[J]. RSC Adv, 2015, 5(105): 86219-86236.
[7] [7] ROCHA J, BRITE C D S, CARLOS L D. Lanthanide organic framework luminescent thermometers[J]. Chem A Eur J, 2016, 22(42): 14782-14795.
[8] [8] WANG S P, WESTCOTT S, CHEN W. Nanoparticle luminescence thermometry[J]. J Phys Chem B, 2002, 106(43): 11203-11209.
[9] [9] CHAMBERS M D, CLARKE D R. Doped oxides for high-temperature luminescence and lifetime thermometry[J]. Annu Rev Mater Res, 2009, 39: 325-359.
[10] [10] DRAMICANIN M D. Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. a review[J]. Methods Appl Fluores, 2016, 4(4): 042001.
[11] [11] WADE S A, COLLINS S F, BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. J Appl Phys, 2003, 94(8): 4743-4756.
[12] [12] VLASKIN V A, JANSSEN N, VAN RIJSSEL J, et al. Tunable dual emission in doped semiconductor nanocrystals[J]. Nano Lett, 2010, 10(9): 3670-3674.
[13] [13] LEON-LUIS S F, RODRIGUEZ-MENDOZA U R, HARO-GONZALEZ P, et al. Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors[J]. Sensors Actuat B Chem, 2012, 174: 176-186.
[14] [14] WANG C X, LIN H H, XU Z Z, et al. Tunable carbon-dot-based dual-emission fluorescent nanohybrids for ratiometric optical thermometry in living cells[J]. ACS Appl Mater Interfaces, 2016, 8(10): 6621-6628.
[15] [15] CAI P, QIN L, CHEN C, et al. Optical thermometry based on vibration sidebands in Y2MgTiO6:Mn4+ double perovskite[J]. Inorg Chem, 2018, 57(6): 3073-3081.
[16] [16] ZHOU S S, DENG K M, WEI X T, et al. Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing[J]. Opt Commun, 2013, 291: 138-142.
[17] [17] ZHANG Q, LUO H H, ZHU Z L, et al. Reversible luminescence modulation and temperature-sensing properties of Pr3+/Yb3+ codoped K0.5Na0.5NbO3 ceramics[J].J Am Ceram Soc, 2019, 102: 6018-6026.
[18] [18] TIAN X N, WEI X T, CHEN Y H, et al. Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd3+[J]. Opt Express, 2014, 22(24): 30333-30345.
[19] [19] CAO Z M, ZHOU S S, JIANG G C, et al. Temperature dependent luminescence of Dy3+ doped BaYF5 nanoparticles for optical thermometry[J]. Curr Appl Phys, 2014, 14(8): 1067-1071.
[20] [20] GAO Y, HUANG F, LIN H, et al. A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states[J]. Adv Funct Mater, 2016, 26(18): 3139-3145.
[21] [21] WANG Y, GUO N, SHAO B Q, et al. Adjustable photoluminescence of
[22] [22] ZHOU S S, WEI X T, LI X Y, et al. Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles[J]. Sensors Actuat B Chem, 2017, 246: 352-357.
[23] [23] WANG Q, LIAO M, LIN Q M, et al. A review on fluorescence intensity ratio thermometer based on rare earth and transition metal ions doped inorganic luminescent materials[J]. J Alloys Compd, 2021, 850: 156744.
[24] [24] LI X Y, YANG L Y, ZHU Y W, et al. Upconversion of transparent glass ceramics containing β-NaYF4:Yb3+, Er3+ nanocrystals for optical thermometry[J]. RSC Adv, 2019, 9(14): 7984-7954.
[25] [25] CAO J K, LI X M, WANG Z X, et al. Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics[J]. Sensor Actuat B Chem, 2016, 224: 507-513.
[26] [26] HU F F, CAO J K, WEI X T, et al. Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion[J]. J Mater Chem C, 2016, 4(42): 9976-9985.
[27] [27] CHEN D Q, WAN Z Y, ZHOU Y, et al. Cr3+-doped gallium-based transparent bulk glass ceramics for optical temperature sensing[J]. J Eur Ceram Soc, 2015, 35(15): 4211-4216.
[28] [28] WADHWA A, WANG C J, WANG C H, et al. Multi-phase glass-ceramics containing CaF2:Er3+ and ZnAl2O4:Cr3+ nanocrystals for optical temperature sensing[J]. J Am Ceram Soc, 2019, 102(5): 2472-2481.
[29] [29] LI X Y, CHEN Y L, YANG T, et al. Dual-phase glass ceramics for dual-modal optical thermometry through a spatial isolation strategy[J]. Dalton Trans, 2021, 50: 16223-16232.
[30] [30] CHEN D Q, WAN Z Y, LIU S. Highly sensitive dual-phase nanoglass-ceramics self-calibrated optical thermometer[J]. Anal Chem, 2016, 88(7): 4099-4106.
[31] [31] PENG C, LI G G, GENG D L, et al. Fabrication and luminescence properties of one-dimensional ZnAl2O4 and ZnAl2O4: A3+ (A=Cr, Eu, Tb) microfibers by electrospinning method[J]. Mater Res Bull, 2012, 47: 3592-3599.
[32] [32] GLAIS E, PELLERIN M, CASTAING V, et al. Luminescence properties of ZnGa2O4:Cr3+, Bi3+ nanophosphors for thermometry applications[J]. RSC Adv, 2018, 8(73): 41767-41774.
Get Citation
Copy Citation Text
LI Xinyue, TONG Yuzheng, LIN Jidong, WANG Shaoxiong, LI Shichen, CHEN Daqin. Optical Thermometry Based on Fluorescence Intensity Ratio in Dual-Phases Glass Ceramics Containing LiYF4: Ln3+(Ln=Tb, Dy) and ZnAl2O4: Cr3+ Nanocrystals[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 966
Category:
Received: Nov. 30, 2021
Accepted: --
Published Online: Nov. 13, 2022
The Author Email: Xinyue LI (lixy@hdu.edu.cn)