Journal of Innovative Optical Health Sciences, Volume. 18, Issue 1, 2450018(2025)

A 3D semantic segmentation network for accurate neuronal soma segmentation

Li Ma1、*, Qi Zhong1、**, Yezi Wang1、***, Xiaoquan Yang2、****, and Qian Du3、*****
Author Affiliations
  • 1School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, P. R. China
  • 2Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
  • 3Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS 39762, USA
  • show less
    References(43)

    [1] H. Gong et al. Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. Neuroimage, 74, 87-98(2013).

    [2] Q. Li et al. Deep learning based neuronal soma detection and counting for alzheimer’s disease analysis. Comput. Methods Programs Biomed., 203, 106023(2021).

    [3] B. Yang et al. Structure-guided segmentation for 3D neuron reconstruction. IEEE Trans. Med. Imaging, 41, 903-914(2021).

    [4] F. Nourbakhsh et al. Neural cell segmentation in large-scale 3D color fluorescence microscopy Images for developemental neuroscience. Proc. IEEE Int. Conf. Image Process. (ICIP), 3828-3832(2018).

    [5] J. Yi, P. Wu, D. J. Hoeppner, D. Metaxas. Pixel-wise neural cell instance segmentation. Proc. IEEE Int. Symp. Biomed. Imaging (ISBI), 373-377(2018).

    [6] L. Acciai, P. Soda, G. Iannello. Automated neuron tracing methods: An updated account. Neuroinformatics, 14, 353-367(2016).

    [7] H. Li, G. Sun, H. Sun, W. Liu. Watershed algorithm based on morphology for dental X-ray images segmentation. Proc. IEEE Int. Conf. Signal Process. (ICSP), 2, 877-880(2012).

    [8] M. Gamarra et al. Split and merge watershed: A two-step method for cell segmentation in fluorescence microscopy images. Biomed. Signal Process. Control, 53, 101575(2019).

    [9] P. Wang et al. Research and implementation of conglutinated macrophage image segmentation based on improved watershed algorithm. Adv. Mater. Res., 225, 483-487(2011).

    [10] R. Stoklasa et al. Automated cell segmentation in phase-contrast images based on classification and region growing. Proc. IEEE Int. Symp. Biomed. Imaging (ISBI), 1447-1451(2015).

    [11] S. S. Pfister et al. Robust 3D cell segmentation by local region growing in convex volumes. Proc. IEEE Int. Symp. Biomed. Imaging (ISBI), 426-431(2013).

    [12] M. Kass, A. Witkin, D. Terzopoulos. Snakes: Active contour models. Int. J. Comput. Vis., 1, 321-331(1988).

    [13] S. Osher, J. A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79, 12-49(1988).

    [14] A. Çayir, I. Yenidoğan, H. Dağ. Feature extraction based on deep learning for some traditional machine learning methods. Proc. Int. Conf. Comput. Sci. Eng. (UBMK), 494-497(2018).

    [15] P. Wang, E. Fan, P. Wang. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recognit. Lett., 141, 61-67(2021).

    [16] J. Long, E. Shelhamer, T. Darrell. Fully convolutional networks for semantic segmentation. Proc. IEEE Comput. Vis. Pattern Recognit. (CVPR), 3431–3440(2015).

    [17] O. Ronneberger, P. Fischer, T. Brox. U-net: Convolutional networks for biomedical image segmentation. Proc. Med. Image Comput. Comput. Assist. Interv. (MICCAI), 234-241(2015).

    [18] Z. Yao et al. Accurate cell segmentation in digital pathology images via attention enforced networks. Proc. Int. Conf. Pattern Recognit. (ICPR), 1590-1595(2021).

    [19] W. Zhang, Z. Zhu, Y. Zhang. Cell image segmentation method based on residual block and attention mechanism. Acta Opt. Sin., 40, 1710001(2020).

    [20] J. Lu et al. A novel hybridoma cell segmentation method based on multi-scale feature fusion and dual attention network. Electronics, 12, 979(2023).

    [21] H. Fujii et al. X-net with different loss functions for cell image segmentation. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 3793-3800(2021).

    [22] F. A. Guerrero-Pena et al. Multiclass weighted loss for instance segmentation of cluttered cells. Proc. IEEE Int. Conf. Image Process. (ICIP), 2451-2455(2018).

    [23] K. Xu et al. Neuron segmentation based on CNN with semi-supervised regularization. Proc. IEEE Comput. Vis. Pattern Recognit. (CVPR), 20-28(2016).

    [24] M. Dong et al. 3D CNN-based soma segmentation from brain images at single-neuron resolution. Proc. IEEE Int. Conf. Image Process. (ICIP), 126-130(2018).

    [25] J. Yi et al. Attentive neural cell instance segmentation. Med. Image Anal., 55, 228-240(2019).

    [26] X. Liu et al. A soma segmentation benchmark in full adult fly brain. Proc. IEEE Comput. Vis. Pattern Recognit. (CVPR), 7402-7411(2023).

    [27] M. Dong et al. Towards neuron segmentation from macaque brain image: A weakly supervised approach. Proc. Med. Image Comput. Comput. Assist. Interv. (MICCAI), 194-203(2020).

    [28] T. Hu et al. Accurate neuronal soma segmentation using 3D multi-task learning U-shaped fully convolutional neural networks. Front. Neuroanat., 14, 592806(2021).

    [29] R. Xiao et al. Ddeep3M+: Adaptive enhancement powered weakly supervised learning for neuron segmentation. J. Neurosci., 10, 035003-035003(2023).

    [30] C. Xi et al. Deep residual contextual and subpixel convolution network for automated neuronal structure segmentation in micro-connectomics. Comput. Methods Programs Biomed., 219, 106759(2022).

    [31] X. Wei et al. 3D soma detection in large-scale whole brain images via a two-stage neural network. IEEE Trans. Med. Imaging, 42, 148-157(2022).

    [32] A. Li et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science, 330, 1404-1408(2010).

    [33] G. Xu et al. LGNet: Local and global representation learning for fast biomedical image segmentation. J. Innov. Opt. Heal. Sci., 16, 2243001(2022).

    [34] Ö. Çiçek et al. 3D U-net: Learning dense volumetric segmentation from sparse annotation. Proc. Med. Image Comput. Comput. Assist. Interv. (MICCAI), 424-432(2016).

    [35] B. Yang et al. Condconv: Conditionally parameterized convolutions for efficient inference(2019).

    [36] Q. Zhong et al. High-definition imaging using line-illumination modulation microscopy. Nat. Methods, 18, 309-315(2021).

    [37] C. Zhou et al. Continuous subcellular resolution three-dimensional imaging on intact macaque brain. Sci. Bull., 67, 85-96(2022).

    [38] J. Schindelin et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods, 9, 676-682(2012).

    [39] V. Badrinarayanan, A. Kendall, R. Cipolla. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39, 2481-2495(2017).

    [40] K. Sun et al. Deep high-resolution representation learning for human pose estimation. Proc. IEEE Comput. Vis. Pattern Recognit. (CVPR), 5693-5703(2019).

    [41] O. Oktay et al. Attention U-net: Learning where to look for the pancreas(2018).

    [42] X. Xiao et al. Weighted Res-UNet for high-quality retina vessel segmentation. Proc. Int. Conf. Inf. Technol. Med. Educ. (ITME), 327-331(2018).

    [43] Z. L. Ni et al. RAUNet: Residual attention U-net for semantic segmentation of cataract surgical instruments. Proc. Int. Conf. Neural Inf. Process. (ICNIP), 139-149(2019).

    Tools

    Get Citation

    Copy Citation Text

    Li Ma, Qi Zhong, Yezi Wang, Xiaoquan Yang, Qian Du. A 3D semantic segmentation network for accurate neuronal soma segmentation[J]. Journal of Innovative Optical Health Sciences, 2025, 18(1): 2450018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 7, 2024

    Accepted: Jul. 10, 2024

    Published Online: Feb. 21, 2025

    The Author Email: Ma Li (mali@cug.edu.cn), Zhong Qi (zq20171001535@cug.edu.cn), Wang Yezi (cugwyz20000720@163.com), Yang Xiaoquan (xqyang@mail.hust.edu.cn), Du Qian (du@ece.msstate.edu)

    DOI:10.1142/S1793545824500184

    Topics