Acta Optica Sinica, Volume. 42, Issue 3, 0327008(2022)

Compact Quantum Entangled-Photon Source for Space Platform

Xiaoyan Zhou1,2, Bo Li1,2, Yuhuai Li1,2, Yuan Cao1,2, Juan Yin1、*, and Chengzhi Peng1,2
Author Affiliations
  • 1University of Science and Technology of China, Hefei, Anhui 230026, China
  • 2CAS Center for Excellence in Quantum Information and Quantum Physics, Shanghai 201315, China
  • show less
    Figures & Tables(12)
    Development history of entangled-photon source
    Schematic of process and energy levels of converting high energy photon into two low energy photons[60]. (a) Process of generating photon pairs after SPDC in pumped second-order nonlinear crystal; (b) schematic of equivalent energy level transition
    Type-II SPDC on BBO crystal, generation of two parametric photons with orthogonal polarization
    Fundamentals of QPM. (a) Principle of quasi-phase-matching using periodic polarization; (b) polarization inversion and quasi-phase-matching in real-world processes
    Satellite-based entangled-photon source of Micius. (a) Main optical path of entangled-photon source[15]; (b) polarization detection of entangled-photon source[15]; (c) 3D model diagram of entangled-photon source engineering prototype
    SpooQy-1 experimental scheme[68]. (a) Important optical components in optical path; (b) schematic of entangled-photon source generated by two BBO crystals; (c) detection devices for entangled-photon pairs generated by SPDC; (d) SpooQy-1 micro-nano satellite structure diagram
    Experimental diagram of teleportation scheme[73]
    Entangled-photon source engineering prototype of ESA project[74]
    Setup of type-0 PPKTP entangled-photon source[21]
    Bell inequality test experiment with human freewill[21]. (a) Concept diagram of experimental setup; (b) simulation experiment diagram
    • Table 1. Comparison of launched and planned quantum entangled-photon source payloads

      View table

      Table 1. Comparison of launched and planned quantum entangled-photon source payloads

      Satellite or spaceplatform on boardNationLaunch timeTypeGeneration rate /(pair·s-1·mW-1)
      Quantum science satellite MiciusChina2016.08Type-II PPKTP crystal in Sagnac~106
      SpooQy-1Singapore2019.04Double Type-I BBO crystal~104
      International space stationAmericaPlanningPPLN crystal in Sagnac~106
      Space-EPS(entangled-photon source)Germany and AustriaPlanningType-II PPKTP crystal in Sagnac~106
      Medium-to-high orbitquantum science satelliteChinaPlanningType-0 PPKTP crystal in Sagnac~108
    • Table 2. Integrated optical entanglement source

      View table

      Table 2. Integrated optical entanglement source

      SchemeMaterialGeneration rate /(pair·s-1·mW-1)
      Ref. [83]PPLN1.00×106
      Ref. [84]Bragg reflectionwaveguide-
      Ref. [85]AlGaAs1.15×107
      Ref. [86]MgO∶PPLN1.96×106
      Ref. [87]AlN3.00×106
      Ref. [88]PPLN2.20×109
      Ref. [89]PPKTP5.60×106
      Ref. [90]Ti∶LiNbO32.80×107
      Ref. [91]PPLN2.50×109 (3.4 μW)2.70×109 (13.4 μW)
      Ref. [92]PPLN2.79×1011
    Tools

    Get Citation

    Copy Citation Text

    Xiaoyan Zhou, Bo Li, Yuhuai Li, Yuan Cao, Juan Yin, Chengzhi Peng. Compact Quantum Entangled-Photon Source for Space Platform[J]. Acta Optica Sinica, 2022, 42(3): 0327008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Sep. 13, 2021

    Accepted: Dec. 10, 2021

    Published Online: Jan. 25, 2022

    The Author Email: Yin Juan (yinjuan@ustc.edu.cn)

    DOI:10.3788/AOS202242.0327008

    Topics