Journal of Synthetic Crystals, Volume. 49, Issue 11, 2098(2020)

Investigation on the Growth and Physical Properties of AlN Nanostructures

LIU Mengting1,*... HAN Jiecai2, WANG Xianjie1 and SONG Bo2 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(111)

    [5] [5] Haber J A, Gibbons P C, Buhro W E. Morphological control of nanocrystalline aluminum nitride:aluminum chlorideassisted nanowhisker growth[J]. Journal of the American Chemical Society,1997,119(23): 54555456.

    [6] [6] Haber J A, Gibbons P C, Buhro W E. Morphologically selective synthesis of nanocrystalline aluminum nitride[J]. Chemistry of Materials, 1998, 10(12):40624071.

    [7] [7] Paul R K, Lee K H, Lee B T, et al. Formation of AlN nanowires using Al powder[J]. Materials Chemistry and Physics, 2008, 112(2): 562565.

    [8] [8] Tang C C, Fan S S, De La Chapelle M L, et al. Silicaassisted catalytic growth of oxide and nitride nanowires[J]. Chemical Physics Letters, 2001, 333(12): 1215.

    [9] [9] Wu Q, Hu Z, Wang X, et al. Synthesis and optical characterization of aluminum nitride nanobelts[J]. Journal of Physical Chemistry B, 2003, 107: 97269729.

    [10] [10] Wu Q, Hu Z, Wang X, et al. Extended vaporliquidsolid growth and field emission properties of aluminium nitride nanowires[J]. Journal of Material Chemistry, 2003, 13(8): 20242027.

    [11] [11] Shi S C, Chen C F, Chattopadhyay S, et al. Growth of single crystalline wurtzite aluminum nitride nanotips with a self selective apex angle[J]. Advanced Functional Materials, 2005, 15(5): 781786.

    [12] [12] Sun M, Wu X L, He C Y, et al. Controllable growth of hierarchical AlN nanostructures based on dynamic equilibrium[J]. Cryst Eng Comm, 2011, 13(21): 63376341.

    [13] [13] Shen L H, Lv W, Wang N, et al. Controllable synthesis of AlN nanostructures and their photoluminescence[J]. Cryst Eng Comm, 2017, 19(39): 59405945.

    [14] [14] Yang H Y, Yu S F, Hui Y Y, et al. Electroluminescence from AlN nanowires grown on pSiC substrate[J]. Applied Physics Letters, 2010, 97(19): 191105.

    [15] [15] Kurtuldu F, Gke A, Kurt A O. The effect of Mg(NO3)2 addition on the formation of AlN nanowire by direct nitridation[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(24): 2068820694.

    [16] [16] Wang H, Liu G, Yang W, et al. Bicrystal AlN zigzag nanowires[J]. The Journal of Physical Chemistry C, 2007, 111(46): 1716917172.

    [17] [17] Liu F, Su Z J, Mo F Y, et al. Controlled synthesis of ultralong AlN nanowires in different densities and in situ investigation of the physical properties of an individual AlN nanowire[J]. Nanoscale, 2011, 3(2): 610618.

    [19] [19] Cimalla V, Foerster C, Cengher D, et al. Growth of AlN nanowires by metal organic chemical vapour deposition[J]. Physica Status Solidi (b), 2006, 243(7): 14761480.

    [20] [20] Yu L S, Lv Y Y, Zhang X L, et al. Vaporliquidsolid growth route to AlN nanowires on Aucoated Si substrate by direct nitridation of Al powder[J]. Journal of Crystal Growth, 2011, 334(1): 5761.

    [21] [21] Wu H M, Liang J Y. Synthesis and luminescence properties of AlN nanowires[J]. Ferroelectrics, 2009, 383(1): 95101.

    [22] [22] Tang Y B, Cong H T, Wang Z M, et al. Catalystseeded synthesis and field emission properties of flowerlike Sidoped AlN nanoneedle array[J]. Applied Physics Letters, 2006, 89(25): 253112.

    [23] [23] Su J, Cui G, Gherasimova M, et al. Catalytic growth of group IIInitride nanowires and nanostructures by metalorganic chemical vapor deposition[J]. Applied Physics Letters, 2005, 86(1): 013105.

    [24] [24] Duan J H, Yang S G, Liu H W, et al. AlN nanorings[J]. Journal of Crystal Growth, 2005, 283(34): 291296.

    [25] [25] Duan J H, Yang S G, Liu H W, et al. Preparation and characterization of straight and zigzag AlN nanowires[J]. Journal of Physical Chemistry B, 2005, 109(9): 3701.

    [26] [26] Tang Y B, Bo X H, Xu J, et al. Tunable ptype conductivity and transport properties of AlN nanowires via Mg doping[J]. Acs Nano, 2011, 5(5): 35913598.

    [27] [27] Hui Y Y, Ye J, Lortz R, et al. Magnetic properties of Mgdoped AlN zigzag nanowires[J]. Physica Status Solidi (a), 2012, 209(10): 19881992.

    [29] [29] Yang Y, Zhao Q, Zhang X Z, et al. Mndoped AlN nanowires with room temperature ferromagnetic ordering[J]. Applied Physics Letters, 2007, 90(9): 092118.

    [30] [30] Ji X H, Lau S P, Yu S F, et al. Ferromagnetic Cudoped AlN nanorods[J]. Nanotechnology, 2007, 18(10): 105601.

    [31] [31] Ji X H, Lau S P, Yu S F, et al. Ultraviolet photoluminescence from ferromagnetic Fedoped AlN nanorods[J]. Applied Physics Letters, 2007, 90(19): 193118.

    [32] [32] Lei W W, Liu D, Zhu P W, et al. Ferromagnetic Scdoped AlN sixfold symmetrical hierarchical nanostructures[J]. Applied Physics Letters, 2009, 95(16): 162501.

    [33] [33] Lei W, Liu D, Chen X, et al. Ferromagnetic properties of Ydoped AlN nanorods[J]. The Journal of Physical Chemistry C, 2010, 114(37): 1557415577.

    [34] [34] Zhao Q, Xu J, Xu X Y, et al. Field emission from AlN nanoneedle arrays[J]. Applied Physics Letters, 2004, 85(22):53315333.

    [35] [35] He J H, Yang R S, Chueh Y L, et al. Aligned AlN nanorods with multi tipped surfaces growth, field emission, and cathodoluminescence properties[J]. Advanced Materials, 2006, 18(5): 650654.

    [36] [36] Zhang Y J, Liu J, He R R, et al. Synthesis of aluminum nitride nanowires from carbon nanotubes[J]. Chemistry of Materials, 2001, 13(11): 38993905.

    [37] [37] Yuan Z H, Sun S Q, Duan Y Q, et al. Fabrication of densely packed AlN nanowires by a chemical conversion of Al2O3 nanowires based on porous anodic alumina film[J]. Nanoscale Research Letters, 2009, 4(10): 11261129.

    [39] [39] Liu N, Wu Q, He C, et al. Patterned growth and field emission properties of AlN nanocones[J]. ACS Applied Material Interfaces, 2009, 1(9): 19271930.

    [40] [40] Wu Q, Hu Z, Wang X Z, et al. A simple route to aligned AlN nanowires[J]. Diamond and Related Materials, 2004, 13(1): 3841.

    [41] [41] Wu Q, Liu N, Zhang Y L, et al. Tuning the field emission properties of AlN nanocones by doping[J]. Journal of Materials Chemistry C, 2015, 3(5): 11131117.

    [42] [42] Tondare V N, Balasubramanian C, Shende S V, et al. Field emission from open ended aluminum nitride nanotubes[J]. Applied Physics Letters, 2002, 80(25): 48134815.

    [43] [43] Tang Y B, Cong H T, Zhao Z G, et al. Field emission from AlN nanorod array[J]. Applied Physics Letters, 2005, 86(15):153104.

    [44] [44] Shen L H, Li X F, Zhang J, et al. Synthesis of singlecrystalline wurtzite aluminum nitride nanowires by direct arc discharge[J]. Applied Physics A, 2006, 84(12): 7375.

    [45] [45] Lei W W, Liu D, Zhu P W, et al. Onestep synthesis of the pineshaped nanostructure of aluminum nitride and its photoluminescence properties[J]. The Journal of Physical Chemistry C, 2008, 112(35): 1335313358.

    [47] [47] Yang S L, Gao R S, Niu P L, et al. Room temperature ferromagnetic behavior of cobalt doped AlN nanorod arrays[J]. Applied Physics A, 2009, 96(3): 769774.

    [49] [49] Yazdi G R, Syvjrvi M, Yakimova R. Aligned AlN nanowires and microrods by selfpatterning[J]. Applied Physics Letters, 2007, 90(12): 123103

    [50] [50] Lei M, Guo X, Guo Y, et al. Large scale AlN nanowires synthesized by direct sublimation method[J]. Journal of the European Ceramic Society, 2009, 29: 195200.

    [51] [51] Zhang X H, Shao R W, Jin L, et al. Helical growth of aluminum nitride: new insights into its growth habit from nanostructures to single crystals[J]. Scientific Reports, 2015, 5: 10087.

    [52] [52] Byeun Y K, Telle R, Jung S H, et al. The growth of one dimensional single crystalline AlN nanostructures by HVPE and their field emission properties[J]. Chemical Vapor Deposition, 2010, 16(13): 7279.

    [53] [53] Hsu K Y, Liu C P, Chung H C, et al. Molecular beam epitaxy growth of wurtzite AlN nanotips[J]. Applied Physics Letters, 2008, 93(18): 181902.

    [54] [54] Tsipas P, Kassavetis S, Tsoutsou D, et al. Evidence for graphitelike hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)[J]. Applied Physics Letters, 2013, 103(25): 251605.

    [55] [55] Landré O, Fellmann V, Jaffrennou P, et al. Molecular beam epitaxy growth and optical properties of AlN nanowires[J]. Applied Physics Letters, 2010, 96(6): 061912.

    [56] [56] Wang Q, Zhao S, Connie A T, et al. Optical properties of strainfree AlN nanowires grown by molecular beam epitaxy on Si substrates[J]. Applied Physics Letters, 2014, 104(22): 223107.

    [57] [57] Connie A T, Zhao S, Sadaf S M, et al. Optical and electrical properties of Mgdoped AlN nanowires grown by molecular beam epitaxy[J]. Applied Physics Letters, 2015, 106(21): 213105.

    [58] [58] Wu C Z, Yang Q, Huang C, et al. Facile solventfree synthesis of purephased AlN nanowhiskers at a low temperature[J]. Journal of Solid State Chemistry, 2004, 177(10): 35223528.

    [59] [59] Fan Y J. Formation of crystalline AlN nanotubes by a rollup approach[J]. Materials Letters, 2011, 65(12): 19001902.

    [60] [60] Lv H M, Chen G D, Ye H G, et al. Synthesis of monocrystal aluminum nitride nanowires at low temperature[J]. Journal of Applied Physics, 2007, 101(5): 053526.

    [63] [63] Sun Y L, Liang Y C, Zhi M L, et al. Preparation and characterization of aluminum nitride nanowire[J]. Applied Mechanics and Materials, 2013, 274: 398401.

    [64] [64] Sun Y L, Dong L M, Jiang T, et al. Effection of additive on aluminum nitride nanowire synthesis by double decomposition method[J]. Advanced Materials Research, 2013, 744: 428431.

    [67] [67] Yin L W, Bando Y, Zhu Y C, et al. Single crystalline AlN nanotubes with Carbon layer coatings on the outer and inner surfaces via a multiwalled carbon nanotube template induced route[J]. Advanced Materials, 2005, 17(2): 213217.

    [68] [68] Shi Z, Radwan M, Kirihara S, et al. Formation and evolution of quasi aligned AlN nanowhiskers by combustion synthesis[J]. Journal of Alloys and Compounds, 2009, 476(12): 360365.

    [69] [69] Coulon P M, Kusch G, Fletcher P, et al. Hybrid topdown/bottomup fabrication of a highly uniform and organized faceted AlN nanorod scaffold[J]. Materials (Basel), 2018, 11(7): 1140.

    [70] [70] Coulon P M, Kusch G, Le Boulbar E D, et al. Hybrid topdown/bottomup fabrication of regular arrays of AlN nanorods for deep UV coreshell LEDs[J]. Physica Status Solidi (b), 2018, 255(5): 1700445.

    [71] [71] Shi Z Q, Radwan M, Kirihara S, et al. Enhanced thermal conductivity of polymer composites filled with threedimensional brushlike AlN nanowhiskers[J]. Applied Physics Letters, 2009, 95(22): 224104.

    [72] [72] Shi Z Q, Radwan M, Kirihara S, et al. Morphology controlled synthesis of quasialigned AlN nanowhiskers by combustion method: Effect of NH4Cl additive[J]. Ceramics International, 2009, 35(7): 27272733.

    [73] [73] Liu C, Hu Z, Wu Q, et al. Vaporsolid growth and characterization of aluminum nitride nanocones[J]. Journal of the American Chemical Society, 2005, 127: 13181322

    [74] [74] Liu C, Hu Z, Wu Q, et al. Synthesis and field emission properties of aluminum nitride nanocones[J]. Applied Surface Science, 2005, 251(14): 220224.

    [75] [75] Chen H T, Chen G S, Zhou X M, et al. Defect related energy structures of AlN nanotips probed by photoluminescence[J]. Journal of Physics D Applied Physics, 2011, 44(50): 505304.

    [76] [76] Chen F, Ji X H, Zhang Q Y. Radial AlN nanotips on carbon fibers as flexible electron emitters[J]. Carbon, 2015, 81: 124131.

    [78] [78] Song X B, Guo Z G, Zheng J, et al. AlN nanorod and nanoneedle arrays prepared by chloride assisted chemical vapor deposition for field emission applications[J]. Nanotechnology, 2008, 19(11): 115609.

    [79] [79] Zhao Q, Feng S, Zhu Y, et al. Annealing effects on the field emission properties of AlN nanorods[J]. Nanotechnology, 2006, 17(11): S351S354.

    [80] [80] Ji X, Li H J, Wu Z G, et al. Growth of AlN hexagonal oriented complex nanostructures induced by nucleus arrangement[J]. CrystEngComm, 2011, 13(16): 5198.

    [81] [81] Lei M, Yang H, Guo Y F, et al. Synthesis and optical property of high purity AlN nanowires[J]. Materials Science and Engineering: B, 2007, 143(13): 8589.

    [82] [82] Lei M, Yang H, Li P G, et al. Synthesis and characterization of straight and stackedsheet AlN nanowires with high purity[J]. Journal of Alloys and Compounds, 2008, 459(12): 338342.

    [84] [84] Teker K. Aluminium nitride nanowire array films for nanomanufacturing applications[J]. Materials Science and Technology, 2015, 31(15): 18321836.

    [85] [85] Xu C K, Xue L, Yin C R, et al. Formation and photoluminescence properties of AlN nanowires[J]. Physica Status Solidi (a), 2003, 198(2): 329335.

    [86] [86] Shi S C, Chen C F, Chattopadhyay S, et al. Field emission from quasi aligned aluminum nitride nanotips[J]. Applied Physics Letters, 2005, 87(7): 073109.

    [87] [87] Tang Y B, Cong H T, Chen Z G, et al. An array of Eiffeltowershape AlN nanotips and its field emission properties[J]. Applied Physics Letters, 2005, 86(23): 233104.

    [88] [88] Zheng J, Yang Y, Yu B, et al. [0001] Oriented aluminum nitride onedimensional nanostructures: synthesis, structure evolution, and electrical properties[J]. ACS Nano, 2008, 2(1): 134142.

    [89] [89] Zhao Q, Zhang H, Xu X, et al. Optical properties of highly ordered AlN nanowire arrays grown on sapphire substrate[J]. Applied Physics Letters, 2005, 86(19): 193101.

    [90] [90] Li H B, Wu R, Li J, et al. Growth of AlN nanobelts, nanorings and branched nanostructures[J]. Journal of Alloys and Compounds, 2011, 509(5): 21112115.

    [91] [91] Ali Y A, Teker K. Fabrication of ultraviolet photodetector with aluminum nitride nanowire networks via direct transfer method[J]. Microelectronic Engineering, 2019,211: 2628.

    [92] [92] Zheng M Y, Jia Q L, Liu X H, et al. Synthesis of ultralong aluminum nitride nanowires with excellent photoluminescent property by aluminum chloride assisted chemical vapor reaction technique[J]. Ceramics International, 2019, 45(9):1238712392.

    [93] [93] Meng F, Estruga M, Forticaux A, et al. Formation of stacking faults and the screw dislocation driven growth: a case study of aluminum nitride nanowires[J]. Acs Nano, 2013, 7(12): 1136911378.

    [96] [96] Zheng M Y, Zhu S Y, Jia Q L, et al. Synthesis and growth mechanism of aluminum nitride nanowires via a chloride assisted chemical vapor reaction method[J]. Ceramics International, 2019, 45(4): 45204525.

    [97] [97] Cong H T, Ma H B and Sun X C. Synthesis of aluminum nitride nanowires[J]. Physica B: Condensed Matter, 2002, 323(14): 354356.

    [98] [98] Shi S C, Chattopadhyay S, Chen C F, et al. Structural evolution of AlN nanostructures: Nanotips and nanorods[J]. Chemical Physics Letters, 2006, 418(13): 152157.

    [99] [99] Shen L H, Li X F, Cui Q L, et al. Formation and growth mechanism of ripplelike AlN nanowires[J]. Applied Physics A, 2010, 99(1): 111115.

    [103] [103] Balasubramanian C, Bellucci S, Castrucci P, et al. Scanning tunneling microscopy observation of coiled aluminum nitride nanotubes[J]. Chemical Physics Letters, 2004, 383(12): 188191.

    [106] [106] Jin L, Cheng H, Chen J, et al. Controlling morphology evolution of AlN nanostructures: influence of growth conditions in physical vapor transport[J]. Journal of Semiconductors, 2018, 39(7): 073001.

    [107] [107] Kong X Y, Wang Z L. Spontaneous polarization induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts[J]. Nano Letters, 2003, 3(12): 16251631.

    [108] [108] Yang R, Ding Y, Wang Z L. Deformation free single crystal nanohelixes of polar nanowires[J]. Nano Letters, 2004, 4(7): 13091312.

    [109] [109] Wang X Q, Xi G C, Xiong S L, et al. Solution phase synthesis of single crystal CuO nanoribbons and nanorings[J]. Crystal Growth & Design, 2007, 7(5): 930934.

    [110] [110] Jian J K, Zhang Z H, Sun Y P, et al. GaN nanorings: another example of spontaneous polarizationinduced nanostructure[J]. Journal of Crystal Growth, 2007, 303(2): 427432.

    [111] [111] Kuang X P, Zhang H Y, Wang G G, et al. Effect of deposition temperature on the microstructure and surface morphology of caxis oriented AlN films deposited on sapphire substrate by RF reactive magnetron sputtering[J]. Superlattices and Microstructures, 2012, 52(5): 931940.

    [112] [112] Xu X H, Wu H S, Zhang C J, et al. Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering[J]. Thin Solid Films, 2001, 388(1): 6267.

    [113] [113] Ishihara M, Li S J, Yumoto H, et al. Control of preferential orientation of AlN films prepared by the reactive sputtering method[J]. Thin Solid Films, 1998, 316(1): 152157.

    [115] [115] Dong L M, Wu K J, Li X J, et al. Influences of ions doping on micro morphology of AlN nanowire[J]. Digest Journal of Nanomaterials and Biostructures, 2016, 11(3): 983989.

    [116] [116] Hu H R, Wu Z G, Zhang W B, et al. Effect of Mg doping on growth and photoluminescence of AlN hexagonal nanorods[J]. Journal of Alloys and Compounds, 2015, 624: 241246.

    [119] [119] Zong D G, Ong C W, Aravind M, et al. Tensile strength of aluminium nitride films[J]. Philosophical Magazine, 2004, 84(31): 33533373.

    [120] [120] Zhang X H, Zhao C L, Yao T, et al. Significantly enhanced mechanical properties in AlN helix[J]. Nanotechnology, 2017, 28(27): 275703.

    [121] [121] Ji X H, Zhang Q Y, Lau S P, et al. Temperature dependent photoluminescence and electron field emission properties of AlN nanotip arrays[J]. Applied Physics Letters, 2009, 94(17): 1318.

    [122] [122] Ui S W, Choi S C. Anisotropic growth of aluminum nitride nanostructures for a field emission application[J]. Journal of Ceramic Processing Research, 2012, 13(6): 775777.

    [123] [123] Hussain Shah S, Nabi G, Khan W S, et al. Solvo thermal synthesis of AlN nanoneedles: their photoluminescence and field emission properties[J]. Materials Letters, 2013, 107: 255258.

    [124] [124] Guo L A, Chen G, Zhu Y, et al. The growth of Sea urchin like AlN nanostructures by modified CVD and their field emission properties[J]. Journal of Crystal Growth, 2015, 426: 4953.

    [125] [125] Zhang J Y, Jiang X, Wang E. Tubular graphite cones[J]. Science, 2003, 300(5618): 472474.

    [126] [126] Taniyasu Y, Kasu M, Makimoto T. Electrical conduction properties of ntype Sidoped AlN with high electron mobility (>100 cm2 V-1 s-1)[J]. Applied Physics Letters, 2004, 85(20): 46724674.

    [127] [127] Nam K B, Nakarmi M L, Li J, et al. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence[J]. Applied Physics Letters, 2003, 83(5): 878880.

    [128] [128] Nilsson L, Groening O, Emmenegger C, et al. Scanning field emission from patterned carbon nanotube films[J]. Applied Physics Letters, 2000, 76(15): 20712073.

    [129] [129] Ren H H, Wu R, Jian J K, et al. Al vacancy induced room temperature ferromagnetic in undoped AlN[J]. Advanced Materials Research, 2013, 772: 5761.

    [130] [130] Majid A, Asghar F, Rana U A, et al. Role of nitrogen vacancies in cerium doped aluminum nitride[J]. Journal of Magnetism and Magnetic Materials, 2016, 412: 4954.

    [131] [131] Wang Q S, Wu W Z, Zhang W, et al. Tunable optical and magnetic properties of Tmdoped AlN nanostructures[J]. Journal of Magnetism and Magnetic Materials, 2019, 487: 165305.

    [132] [132] Liu F, Li L F, Guo T Y, et al. Investigation on the photoconductive behaviors of an individual AlN nanowire under different excited lights[J]. Nanoscale Research Letters, 2012, 7(1): 454.

    [133] [133] Youngman R A, Harris J H. Luminescence studies of oxygen related defects in aluminum nitride[J]. Journal of the American Ceramic Society, 2010, 73(11): 32383246.

    [134] [134] Jin L, Zhao K, Xu S H, et al. Optical property in colorless AlN bulk crystals: investigation of native defectinduced UV absorption[J]. Scripta Materialia, 2021, 190: 9196.

    [135] [135] Sedhain A. Nature of optical transitions involving cation vacancies and complexes in AlN and AlGaN[J]. Applied Physics Letters, 2012, 100(22): 7747.

    [136] [136] Jin L, Zhang H Y, Pan R Q, et al. Observation of the long afterglow in AlN helices[J]. Nano Letter, 2015, 15(10): 65756581.

    Tools

    Get Citation

    Copy Citation Text

    LIU Mengting, HAN Jiecai, WANG Xianjie, SONG Bo. Investigation on the Growth and Physical Properties of AlN Nanostructures[J]. Journal of Synthetic Crystals, 2020, 49(11): 2098

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Jan. 26, 2021

    The Author Email: Mengting LIU (sixlmt@qq.com)

    DOI:

    CSTR:32186.14.

    Topics