Journal of the Chinese Ceramic Society, Volume. 53, Issue 3, 675(2025)
Progress on B4C-SiC Ceramics Prepared by Reaction Sintering
[2] [2] ZHANG W, YAMASHITA S, KITA H. Effects of load on tribological properties of B4C and B4C-SiC ceramics sliding against SiC balls[J]. J Asian Ceram Soc, 2020, 8(3): 586-596.
[3] [3] ZHANG W, CHEN X Y, YAMASHITA S, et al. B4C-SiC ceramics with interfacial nanorelief morphologies and low underwater friction and wear[J]. ACS Appl Nano Mater, 2021, 4(3): 3159-3166.
[4] [4] ZHANG W. A novel ceramic with low friction and wear toward tribological applications: Boron carbide-silicon carbide[J]. Adv Colloid Interface Sci, 2022, 301: 102604.
[6] [6] ZHANG W. An overview of the synthesis of silicon carbide-boron carbide composite powders[J]. Nanotechnol Rev, 2023, 12(1): 20220571.
[7] [7] MATOVI B, TATARKO P, MAKSIMOVI V, et al. Densification of additive-free B4C-SiC composites by spark plasma sintering[J]. J Eur Ceram Soc, 2024, 44(9): 5340-5346.
[8] [8] YANAI T, NAKAHIRA A, SUGANUMA K, et al. Preparation and properties of B4C-SiC composite[J]. J Jpn Soc Powder Powder Metallurgy, 1990, 37(4): 571-574.
[9] [9] ZHANG W, YAMASHITA S, KUMAZAWA T, et al. A study on formation mechanisms of relief structure formed in situ on the surface of ceramics[J]. Ceram Int, 2019, 45(17): 23143-23148.
[10] [10] ZHANG W. A review of tribological properties for boron carbide ceramics[J]. Prog Mater Sci, 2021, 116: 100718.
[11] [11] ZHANG W, YAMASHITA S, KITA H. Self lubrication of pressureless sintered SiC ceramics[J]. J Mater Res Technol, 2020, 9(6): 12880-12888.
[12] [12] ZHANG W, YAMASHITA S, KITA H. Progress in tribological research of SiC ceramics in unlubricated sliding—A review[J]. Mater Des, 2020, 190: 108528.
[13] [13] ZHANG W. Tribology of SiC ceramics under lubrication: Features, developments, and perspectives[J]. Curr Opin Solid State Mater Sci, 2022, 26(4): 101000.
[14] [14] ZHANG W, YAMASHITA S, KITA H. Effect of counterbody on tribological properties of B4C-SiC composite ceramics[J]. Wear, 2020, 458-459: 203418.
[15] [15] ZHANG W, YAMASHITA S, KITA H. A study of B4C-SiC composite for self-lubrication[J]. J Am Ceram Soc, 2021, 104(5): 2325-2336.
[16] [16] ZHANG W, CHEN X Y, YAMASHITA S, et al. Effect of water temperature on tribological performance of B4C-SiC ceramics under water lubrication[J]. Tribol Lett, 2021, 69(2): 34.
[17] [17] ZHANG W, CHEN X Y, YAMASHITA S, et al. Frictional characteristics of carbide ceramics in water[J]. J Tribol, 2022, 144(1): 011702.
[23] [23] ZHANG W, YAMASHITA S, KITA H. Progress in pressureless sintering of boron carbide ceramics—A review[J]. Adv Appl Ceram, 2019, 118(4): 222-239.
[25] [25] ZHANG W, YAMASHITA S, KITA H. Tribological properties of SiC-B4C ceramics under dry sliding condition[J]. J Eur Ceram Soc, 2020, 40(8): 2855-2861.
[26] [26] SO S M, CHOI W H, KIM K H, et al. Mechanical properties of B4C-SiC composites fabricated by hot-press sintering[J]. Ceram Int, 2020, 46(7): 9575-9581.
[27] [27] ZHANG X R, ZHANG Z X, WANG W M, et al. Densification behaviour and mechanical properties of B4C-SiC intergranular/intragranular nanocomposites fabricated through spark plasma sintering assisted by mechanochemistry[J]. Ceram Int, 2017, 43(2): 1904-1910.
[28] [28] TAYLOR K M, PALICKA R J. Dense carbide composite for armor and abrasives: US3765300[P]. 1973-10-16.
[29] [29] NESMELOV D D, PEREVISLOV S N. Reaction sintered materials based on boron carbide and silicon carbide (review)[J]. Glass Ceram, 2015, 71(9): 313-319.
[30] [30] GRINCHUK P S, KIYASHKO M V, ABUHIMD H M, et al. Advanced technology for fabrication of reaction-bonded SiC with controlled composition and properties[J]. J Eur Ceram Soc, 2021, 41(12): 5813-5824.
[31] [31] ZHANG W. Recent progress in B4C-SiC composite ceramics: Processing, microstructure, and mechanical properties[J]. Mater Adv, 2023, 4(15): 3140-3191.
[32] [32] LIU R Z, DUAN Q W, GU W W, et al. A study on reaction bonded ceramics fabricated by silicon infiltration to B4C preforms[J]. Mater Sci Forum, 2012, 724: 343-346.
[33] [33] LIU R Z, GU W W, YANG Y, et al. Microstructure and mechanical properties of reaction-bonded B4C-SiC composites[J]. Int J Miner Metall Mater, 2021, 28(11): 1828-1835.
[34] [34] HAYUN S, WEIZMANN A, DILMAN H, et al. Rim region growth and its composition in reaction bonded boron carbide composites with core-rim structure[J]. J Phys Conf Ser, 2009, 176: 012009.
[35] [35] MALLICK D, KAYAL T K, GHOSH J, et al. Development of multi-phase B-Si-C ceramic composite by reaction sintering[J]. Ceram Int, 2009, 35(4): 1667-1669.
[36] [36] HAYUN S, WEIZMANN A, DARIEL M P, et al. Microstructural evolution during the infiltration of boron carbide with molten silicon[J]. J Eur Ceram Soc, 2010, 30(4): 1007-1014.
[37] [37] HAYUN S, DILMAN H, DARIEL M P, et al. The effect of carbon source on the microstructure and the mechanical properties of reaction bonded boron carbide[C]//BORDIA R K, OLEVSKY E A ed. Advances in Sintering Science and Technology: Ceramic Transactions. Baltimore, MD USA: American Ceramic Society, 2010: 29-39.
[38] [38] ZHANG C P, RU H Q, WANG W, et al. The role of infiltration temperature in the reaction bonding of boron carbide by silicon infiltration[J]. J Am Ceram Soc, 2014, 97(10): 3286-3293.
[39] [39] JANNOTTI P, SUBHASH G, ZHENG J Q, et al. Raman spectroscopic characterization of the core-rim structure in reaction bonded boron carbide ceramics[J]. Appl Phys Lett, 2015, 106(4): 041903.
[40] [40] WANG T S, NI C Y, KARANDIKAR P. Microstructural characteristics of reaction-bonded B4C/SiC composite[M]//Characterization of Minerals, Metals, and Materials 2016. Cham: Springer, 2016: 279-286.
[41] [41] SUN M Y, BAI Y H, LI M X, et al. In situ toughened two-phase B12(C, Si, B)3-SiC ceramics fabricated via liquid silicon infiltration[J]. J Am Ceram Soc, 2019, 102(4): 2094-2103.
[42] [42] THUAULT A, MARINEL S, SAVARY E, et al. Processing of reaction-bonded B4C-SiC composites in a single-mode microwave cavity[J]. Ceram Int, 2013, 39(2): 1215-1219.
[43] [43] SONG S C, BAO C G, WANG B. Effect of the addition of carbon fibres on the microstructure and mechanical properties of reaction bonded B4C/SiC composites[J]. J Eur Ceram Soc, 2016, 36(8): 1905-1913.
[44] [44] HAYUN S, FRAGE N, DARIEL M P. The morphology of ceramic phases in BxC-SiC-Si infiltrated composites[J]. J Solid State Chem, 2006, 179(9): 2875-2879.
[45] [45] AROATI S, CAFRI M, DILMAN H, et al. Preparation of reaction bonded silicon carbide (RBSC) using boron carbide as an alternative source of carbon[J]. J Eur Ceram Soc, 2011, 31(5): 841-845.
[46] [46] ZHANG W, YAMASHITA S, KUMAZAWA T, et al. Influence of surface roughness parameters and surface morphology on friction performance of ceramics[J]. J Ceram Soc Japan, 2019, 127(11): 837-842.
[47] [47] ZHANG W, YAMASHITA S, KUMAZAWA T, et al. Effect of nanorelief structure formed in situ on tribological properties of ceramics in dry sliding[J]. Ceram Int, 2019, 45(11): 13818-13824.
[48] [48] ZHANG W, CHEN X Y, YAMASHITA S, et al. Tribological behaviour of B4C-SiC composite ceramics under water lubrication: Influence of counterpart[J]. Mater Sci Technol, 2021, 37(9): 863-876.
[49] [49] LEE K S, HAN I S, CHUNG Y H, et al. Hardness and wear resistance of reaction bonded SiC-B4C composite[J]. Mater Sci Forum, 2005, 486-487: 245-248.
[50] [50] HAN I S, LEE K S, SEO D W, et al. Improvement of mechanical properties in RBSC by boron carbide addition[J]. J Mater Sci Lett, 2002, 21(9): 703-706.
[51] [51] LIN W S, FANG N X. Mechanical properties and microstructure of reaction sintering B4C/SiC ceramics[J]. Appl Mech Mater, 2011, 66-68: 510-515.
[52] [52] SUN H B, ZHANG Y J, LI Q S. Preparation and characterization of reaction sintering B4C/SiC composite ceramic[J]. Key Eng Mater, 2014, 602603: 536-539.
[53] [53] LUO Z H, JIANG D L, ZHANG J X, et al. Influence of phenolic resin impregnation on the properties of reaction-bonded silicon carbide[J]. Int J Appl Ceram Technol, 2013, 10(3): 519-526.
[54] [54] CHHILLAR P, AGHAJANIAN M K, MARCHANT D D, et al. The effect of Si content on the properties of B4C-SiC-Si composites[M]//Advances in Ceramic Armor III:Hoboken, NJ, USA, John Wiley & Sons, Inc., 2009: 161-167.
[55] [55] HAYUN S, RITTEL D, FRAGE N, et al. Static and dynamic mechanical properties of infiltrated B4C-Si composites[J]. Mater Sci Eng A, 2008, 487(1/2): 405-409.
[56] [56] HAYUN S, DARIEL M P, FRAGE N, et al. The high-strain-rate dynamic response of boron carbide-based composites: The effect of microstructure[J]. Acta Mater, 2010, 58(5): 1721-1731.
[57] [57] PATEL M, BHANU PRASAD V V, SUBRAHMANYAM J. Compressive property of liquid silicon (infiltrated) boron carbide[J]. Trans Indian Inst Met, 2010, 63(6): 863-866.
[58] [58] PALIWAL B, RAMESH K T. Effect of crack growth dynamics on the rate-sensitive behavior of hot-pressed boron carbide[J]. Scr Mater, 2007, 57(6): 481-484.
[59] [59] XU Y F, RU H Q, LONG H B, et al. Gel-casting process-derived 3D-interconnected porous carbon/B4C preform for reaction-bonded boron carbide composites[J]. Int J Appl Ceram Technol, 2018, 15(2): 409-417.
[60] [60] LI X G, JIANG D L, ZHANG J X, et al. Reaction-bonded B4C with high hardness[J]. Int J Appl Ceram Technol, 2016, 13(3): 584-592.
[61] [61] HAYUN S, WEIZMANN A, DARIEL M P, et al. The effect of particle size distribution on the microstructure and the mechanical properties of boron carbide-based reaction-bonded composites[J]. Int J Appl Ceram Technol, 2009, 6(4): 492-500.
[64] [64] MESSNER R P, CHIANG Y M. Processing of reaction-bonded silicon carbide without residual silicon phase[M]//Ceramic Engineering and Science Proceedings: Hoboken, NJ, USA, John Wiley & Sons, Inc., 2008: 1053-1059.
[65] [65] SIGL L, THALER H, SCHWETZ K A. Composite materials based on boron carbide, titanium diboride and elemental carbon and processes for the preparation of same: US5543370[P]. 1996-08-06.
[66] [66] SIGL L S. Processing and mechanical properties of boron carbide sintered with TiC[J]. J Eur Ceram Soc, 1998, 18(11): 1521-1529.
[67] [67] HAYUN S, FRAGE N, DILMAN H, et al. Synthesis of dense B4C-SiC-TiB2 composites[J]. Ceram Trans, 2006, 178: 37-44.
[69] [69] DARIEL M P, FRAGE N. Reaction bonded boron carbide: Recent developments[J]. Adv Appl Ceram, 2012, 111(5/6): 301-310.
[70] [70] ZHANG Z X, DU X W, WANG W M, et al. Preparation of B4C-SiC composite ceramics through hot pressing assisted by mechanical alloying[J]. Int J Refract Met Hard Mater, 2013, 41: 270-275.
[71] [71] YAAR Z A, HABER R A. Evaluating the role of uniformity on the properties of B4C-SiC composites[J]. Ceram Int, 2021, 47(4): 4838-4844.
[73] [73] ZONG H, ZHANG C P, RU H Q, et al. Effect of forming pressure on microstructure and mechanical properties of B4C-SiC-Si ceramic composites[J]. Key Eng Mater, 2018, 768: 152-158.
[74] [74] LIU R Z, GU W W, YANG Y, et al. Microstructure and mechanical properties of reaction-bonded B4C-SiC composites[J]. Int J Miner Metall Mater, 2021, 28(11): 1828-1835.
[75] [75] DU X W, ZHANG Z X, WANG W M, et al. Microstructure and properties of B4C-SiC composites prepared by polycarbosilane- coating/B4C powder route[J]. J Eur Ceram Soc, 2014, 34(5): 1123-1129.
[76] [76] HWANG C, YANG Q R, XIANG S S, et al. Fabrication of dense B4C-preceramic polymer derived SiC composite[J]. J Eur Ceram Soc, 2019, 39(4): 718-725.
[77] [77] WANG J L, LIN W S, JIANG Z W, et al. The preparation and properties of SiCw/B4C composites infiltrated with molten silicon[J]. Ceram Int, 2014, 40(5): 6793-6798.
[79] [79] ZHANG W, YAMASHITA S, KUMAZAWA T, et al. Tribological properties of B4C ceramics prepared by pressureless sintering and annealed at different temperatures[J]. Tribol Trans, 2020, 63(4): 672-682.
[80] [80] ZHANG W, YAMASHITA S, KUMAZAWA T, et al. Study on friction behavior of SiC-B4C composite ceramics after annealing[J]. Ind Lubr Tribol, 2019, 72(5): 673-679.
Get Citation
Copy Citation Text
ZHANG Wei, ZHANG Jin, DUAN Chunlei, GENG Hao, HAN Yang. Progress on B4C-SiC Ceramics Prepared by Reaction Sintering[J]. Journal of the Chinese Ceramic Society, 2025, 53(3): 675
Category:
Received: Jun. 28, 2024
Accepted: Mar. 10, 2025
Published Online: Mar. 10, 2025
The Author Email: