Chinese Journal of Quantum Electronics, Volume. 41, Issue 1, 161(2024)

A conversion method for improving fidelity of quantum circuits

NIU Yiren, GUAN Zhijin*, LI Haifeng, and LU Junyu
Author Affiliations
  • College of Information Science and Technology, Nantong University, Nantong 226019, China
  • show less
    References(22)

    [1] Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Review, 41, 303-332(1999).

    [2] Cao Y D, Romero J, Olson J P et al. Quantum chemistry in the age of quantum computing[J]. Chemical Reviews, 119, 10856-10915(2019).

    [4] Leibfried D, Blatt R, Monroe C et al. Quantum dynamics of single trapped ions[J]. Reviews of Modern Physics, 75, 281-324(2003).

    [5] Krantz P, Kjaergaard M, Yan F et al. A quantum engineer's guide to superconducting qubits[J]. Applied Physics Reviews, 6, 021318(2019).

    [6] Chen Y, Neill C, Roushan P et al. Qubit architecture with high coherence and fast tunable coupling[J]. Physical Review Letters, 113, 220502(2014).

    [7] Van Meter R[M]. Quantum Networking(2014).

    [8] de Almeida A A A, Dueck G W, da Silva A C R. Finding optimal qubit permutations for IBM's quantum computer architectures[C]. Brazil(2019).

    [9] Murali P, Linke N M, Martonosi M et al. Full-stack, real-system quantum computer studies: Architectural comparisons and design insights[C], 527-540(2019).

    [10] Shen M Y, Cheng X Y, Guan Z J et al. Realization method of two-dimensional nearest neighbor for quantum circuit[J]. Chinese Journal of Quantum Electronics, 36, 476-482(2019).

    [11] Wang Y Z, Guan Z J, Guan H Y. Linear nearest neighbor synthesis algorithm of quantum circuits based on pre-evaluation[J]. Chinese Journal of Quantum Electronics, 38, 75-85(2021).

    [12] Zulehner A, Paler A, Wille R. An efficient methodology for mapping quantum circuits to the IBM QX architectures[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38, 1226-1236(2019).

    [13] Zhu P C, Guan Z J, Cheng X Y. A dynamic look-ahead heuristic for the qubit mapping problem of NISQ computers[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39, 4721-4735(2020).

    [14] Guerreschi G G, Park J. Two-step approach to scheduling quantum circuits[J]. Quantum Science and Technology, 3, 045003(2018).

    [15] Tannu S S, Qureshi M K. Not all qubits are created equal: A case for variability-aware policies for NISQ-era quantum computers[C], 987-999(2019).

    [16] Siraichi M Y, dos Santos V F, Collange S et al. Qubit allocation[C], 113-125(2018).

    [18] Nishio S, Pan Y L, Satoh T et al. Extracting success from IBM's 20-qubit machines using error-aware compilation[J]. ACM Journal on Emerging Technologies in Computing Systems, 16, 1-25(2020).

    [19] Warshall S. A theorem on Boolean matrices[J]. Journal of the ACM, 9, 11-12.

    [20] Floyd R W. Algorithm 97: Shortest path[J]. Communications of the ACM, 5, 345(1962).

    [21] Kelly J, Barends R, Fowler A G et al. State preservation by repetitive error detection in a superconducting quantum circuit[J]. Nature, 519, 66-69(2015).

    [22] Walter T, Kurpiers P, Gasparinetti S et al. Rapid high-fidelity single-shot dispersive readout of superconducting qubits[J]. Physical Review Applied, 7, 054020(2017).

    Tools

    Get Citation

    Copy Citation Text

    Yiren NIU, Zhijin GUAN, Haifeng LI, Junyu LU. A conversion method for improving fidelity of quantum circuits[J]. Chinese Journal of Quantum Electronics, 2024, 41(1): 161

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 8, 2021

    Accepted: --

    Published Online: Mar. 19, 2024

    The Author Email: GUAN Zhijin (guan.zj@ntu.edu.cn)

    DOI:10.3969/j.issn.1007-5461.2024.01.016

    Topics