Laser & Optoelectronics Progress, Volume. 60, Issue 23, 2314006(2023)

Fabrication of Infrared Micro-Optical Components Using Femtosecond Laser

Yahua Niu1, Shengzhi Sun1, Xiaofeng Liu2、*, and Jianrong Qiu3
Author Affiliations
  • 1Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, Zhejiang, China
  • 2State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • 3State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • show less
    References(57)

    [2] Kim Y B, Park J, Lee W S et al. Fabrication of microlens array by the tilted milling method to improve the surface morphology[J]. Materials and Manufacturing Processes, 36, 1171-1177(2021).

    [3] Ye Z, Yao P, Yu S M et al. Precision grinding of cylindrical microlens array[J]. Optics and Precision Engineering, 29, 1567-1579(2021).

    [4] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [5] Qiu J R[M]. Femtosecond laser processing technology: basis and application, 6, 23-24(2018).

    [6] Ma Q, Ma J, Liu Y T et al. Preliminary study on femtosecond laser in material micromachining[J]. New Technology & New Products of China, 9-12(2020).

    [7] Gu B. Application and development trend of additive manufacturing technology at home and abroad[J]. Metal Processing (Hot Processing), 1-16(2022).

    [8] Monzón M D, Ortega Z, Martínez A et al. Standardization in additive manufacturing: activities carried out by international organizations and projects[J]. The International Journal of Advanced Manufacturing Technology, 76, 1111-1121(2015).

    [9] Wang J C. A novel fabrication method of high strength alumina ceramic parts based on solvent-based slurry stereolithography and sintering[J]. International Journal of Precision Engineering and Manufacturing, 14, 485-491(2013).

    [10] Vehse M, Seitz H. A new micro-stereolithography-system based on diode laser curing (DLC)[J]. International Journal of Precision Engineering and Manufacturing, 15, 2161-2166(2014).

    [11] Tang C M, Zhao J B, Tian T T et al. Development of A hybrid additive and subtractive manufacturing system based on selective laser melting and high speed machining[J]. Hot Working Technology, 51, 118-122(2022).

    [12] Zhou Y L, Shan D Y, Wang Z F et al. Study on mechanism and process of laser polished 3D printing titanium alloy sheet[J]. Applied Laser, 39, 621-627(2019).

    [13] Pecholt B, Vendan M, Dong Y Y et al. Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication[J]. The International Journal of Advanced Manufacturing Technology, 39, 239-250(2008).

    [14] Li X X, Jia T Q, Feng D H et al. The mechanism of ablation of sapphire by an ultra-short pulse laser[J]. Acta Physica Sinica, 53, 2154-2158(2004).

    [15] Sun Y Z, Lin X H, Chen Y F. Theoretical model investigation about the mechanism of ultrashort-pulse laser ablation fused silica[J]. Journal of Functional Materials and Devices, 14, 38-42(2008).

    [16] Chen G, Qiao J. Femtosecond-laser-enabled simultaneous figuring and finishing of glass with a subnanometer optical surface[J]. Optics Letters, 47, 3860-3863(2022).

    [17] Bhardwaj V R, Simova E, Rajeev P P et al. Optically produced arrays of planar nanostructures inside fused silica[J]. Physical Review Letters, 96, 057404(2006).

    [18] Tan D Z, Wang Z, Xu B B et al. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices[J]. Advanced Photonics, 3, 024002(2021).

    [19] Wu Y C, Sharma M K, Veeraraghavan A. WISH: wavefront imaging sensor with high resolution[J]. Light:Science & Applications, 8, 44(2019).

    [20] Yang J, Schleusner S, Fabick R et al. Microlens collimation film with near-infrared spectral filter for large-area fingerprint sensor[J]. SID Symposium Digest of Technical Papers, 52, 485-487(2021).

    [21] Freitas J R, Pimenta S, Ribeiro J F et al. Simulation, fabrication and morphological characterization of a PDMS microlens for light collimation on optrodes[J]. Optik, 227, 166098(2021).

    [22] Xiong B, Wang J N, Peng R W et al. Construct achromatic polymer microlens for high-transmission full-color imaging[J]. Advanced Optical Materials, 9, 2001524(2021).

    [23] Li H, Yu Y, Peng J et al. Resolution improvement of light field imaging via a nematic liquid crystal microlens with added multi-walled carbon nanotubes[J]. Sensors, 20, 5557(2020).

    [24] Liu X Q, Yu L, Yang S N et al. Optical nanofabrication of concave microlens arrays[J]. Laser & Photonics Reviews, 13, 1800272(2019).

    [25] Cao X W, Lu Y M, Fan H et al. Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array[J]. Applied Optics, 57, 9604-9608(2018).

    [26] Kadan V, Blonskyi I, Shynkarenko Y et al. Single-pulse femtosecond laser fabrication of concave microlens- and micromirror arrays in chalcohalide glass[J]. Optics & Laser Technology, 96, 283-289(2017).

    [27] Zhang F, Yang Q, Bian H et al. Fabrication of chalcogenide glass based hexagonal gapless microlens arrays via combining femtosecond laser assist chemical etching and precision glass molding processes[J]. Materials, 13, 3490(2020).

    [28] Liu F, Yang Q, Chen F et al. Low-cost high integration IR polymer microlens array[J]. Optics Letters, 44, 1600-1602(2019).

    [29] Zhang L, Dai B, Zhang D W. Research progress of artificial compound eye[J]. Optical Instruments, 43, 86-94(2021).

    [30] Gao X F, Yan X, Yao X et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 19, 2213-2217(2007).

    [31] Lin Y, Han J P, Cai M Y et al. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability[J]. Journal of Materials Chemistry A, 6, 9049-9056(2018).

    [32] Wu X H, Chen Z. A mechanically robust transparent coating for anti-icing and self-cleaning applications[J]. Journal of Materials Chemistry A, 6, 16043-16052(2018).

    [33] Liu X Q, Yang S N, Yu L et al. Rapid engraving of artificial compound eyes from curved sapphire substrate[J]. Advanced Functional Materials, 29, 1900037(2019).

    [34] Liu F, Bian H, Zhang F et al. IR artificial compound eye[J]. Advanced Optical Materials, 8, 1901767(2020).

    [35] Jin G X, Hu X Y, Ma Z C et al. Femtosecond laser fabrication of 3D templates for mass production of artificial compound eyes[J]. Nanotechnology and Precision Engineering, 2, 110-117(2019).

    [36] Chen Q, Wang D N, Gao F. Simultaneous refractive index and temperature sensing based on a fiber surface waveguide and fiber Bragg gratings[J]. Optics Letters, 46, 1209-1212(2021).

    [37] Kawamura K, Ogawa T, Sarukura N et al. Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses[J]. Applied Physics B, 71, 119-121(2000).

    [38] Kohoutek T, Hughes M A, Orava J et al. Direct laser writing of relief diffraction gratings into a bulk chalcogenide glass[J]. Journal of the Optical Society of America B, 29, 2779(2012).

    [39] Wang L, Chen F, Wang X L et al. Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation[J]. Journal of Applied Physics, 101, 053112(2007).

    [40] Nalivaiko V I, Ponomareva M A. Optical grating waveguide sensors based оn chalcogenide glasses[J]. Optics and Spectroscopy, 126, 439-442(2019).

    [41] Nolte S, Will M, Burghoff J et al. Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics[J]. Applied Physics A, 77, 109-111(2003).

    [42] Li S L, Ye Y K, Shen C Y et al. Femtosecond laser inscribed cladding waveguide structures in LiNbO3 crystal for beam splitters[J]. Optical Engineering, 57, 117103(2018).

    [43] Zhang Q, Li M, Xu J et al. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering[J]. Photonics Research, 7, 503-507(2019).

    [44] Zhang X L, Yu F, Chen Z G et al. Non-Abelian braiding on photonic chips[J]. Nature Photonics, 16, 390-395(2022).

    [45] Mizeikis V, Sun H B, Marcinkevičius A et al. Femtosecond laser micro-fabrication for tailoring photonic crystals in resins and silica[J]. Journal of Photochemistry and Photobiology A: Chemistry, 145, 41-47(2001).

    [46] Gailevičius D, Purlys V, Staliunas K. Photonic crystal spatial filters fabricated by femtosecond pulsed Bessel beam[J]. Optics Letters, 44, 4969-4972(2019).

    [47] Wei D Z, Wang C W, Wang H J et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 12, 596-600(2018).

    [48] Chen P C, Wang C W, Wei D Z et al. Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal[J]. Light: Science & Applications, 10, 146(2021).

    [49] Kondo Y, Nouchi K, Mitsuyu T et al. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses[J]. Optics Letters, 24, 646-648(1999).

    [50] Antipov S, Ams M, Williams R J et al. Direct infrared femtosecond laser inscription of chirped fiber Bragg gratings[J]. Optics Express, 24, 30-40(2016).

    [51] Lu P, Mihailov S J, Ding H M et al. Plane-by-plane inscription of grating structures in optical fibers[J]. Journal of Lightwave Technology, 36, 926-931(2018).

    [52] Baghdasaryan T, Geernart T, Morana A et al. IR femtosecond pulsed laser-based fiber Bragg grating inscription in a photonic crystal fiber using a phase mask and a short focal length lens[J]. Optics Express, 26, 14741-14751(2018).

    [53] Wolf A, Dostovalov A, Bronnikov K et al. Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses[J]. Optics Express, 27, 13978-13990(2019).

    [54] Krämer R G, Möller F, Matzdorf C et al. Extremely robust femtosecond written fiber Bragg gratings for an ytterbium-doped fiber oscillator with 5 kW output power[J]. Optics Letters, 45, 1447-1450(2020).

    [55] She L, Qi Q Y, Zhang P Q et al. Mid-infrared fluoroindate glass long-period fiber grating by femtosecond laser inscription[J]. Infrared Physics & Technology, 116, 103808(2021).

    [56] Liu L T, Chen F Y, Xiao X S et al. Direct femtosecond laser inscription of an IR fluorotellurite fiber Bragg grating[J]. Optics Letters, 46, 4832-4835(2021).

    [57] Goebel T A, Nold J, Hupel C et al. Ultrashort pulse written fiber Bragg gratings as narrowband filters in multicore fibers[J]. Applied Optics, 60, D43-D51(2021).

    [58] Liu C, Jiang Y J, Yang H L et al. Highly localized fiber Bragg gratings with strong cladding mode inscribed by femtosecond laser[J]. IEEE Photonics Technology Letters, 34, 587-590(2022).

    Tools

    Get Citation

    Copy Citation Text

    Yahua Niu, Shengzhi Sun, Xiaofeng Liu, Jianrong Qiu. Fabrication of Infrared Micro-Optical Components Using Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2023, 60(23): 2314006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Nov. 22, 2022

    Accepted: Jan. 13, 2023

    Published Online: Dec. 8, 2023

    The Author Email: Liu Xiaofeng (xfliu@zju.edu.cn)

    DOI:10.3788/LOP223127

    Topics