Infrared and Laser Engineering, Volume. 49, Issue 12, 20201053(2020)

Research progress and prospect of spectral beam combining (Invited)

Man Jiang, Pengfei Ma, Rongtao Su, Can Li, Jian Wu, Yanxing Ma, and Pu Zhou*
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • show less
    References(140)

    [1] L H Enloe, J L Rodda. Laser phase-locked loop. Proc of IEEE, 53, 165-166(1965).

    [2] H L Stover, W H Steier. Locking of laser oscillators by light injection. Appl Phys Lett, 8, 91-93(1966).

    [3] [3] Yu C X, Fan T Y. Beam Combining [M]. New Yk: McGrawHill, 2011: 533571.

    [4] Zejin Liu, Pu Zhou, Xiaojun Xu. Coherent beam combining of high power fiber lasers: Progress and prospect. Scientia Sinica Technologica, 43, 979-990(2013).

    [5] H J Kong, S Park, S Cha. Conceptual design of the Kumgang laser: a high-power coherent beam combination laser using SC-SBS-PCMs towards a Dream laser. High Power Laser Science and Engineering, 3, e1(2015).

    [6] W S Brocklesby, J Nilsson, T Schreiber. ICAN as a new laser paradigm for high energy, high average power femtosecond pulses. Eur Phys J, 223, 1189-1195(2014).

    [7] P Ma, P Zhou, Y Ma. Coherent polarization beam combining of four high-power fiber amplifiers using single-frequency dithering technique. IEEE Photon Technol Lett, 24, 1024-1026(2012).

    [8] [8] Pawlak R J. Recent developments near term directions f Navy laser weapons system (LaWS) testbed[C]SPIE, 2012, 8547: 854705.

    [9] [9] Mohring B, Dietrich S, Tassini L, et al. Highenergy laser activities at MBDA Germany[C]SPIE, 2013, 8733: 873304.

    [10] [10] Ludewigt K, Riesbeck T, Graf A, et al. 50 kW laser weapon demonstrat of Rheinmetall Waffe Munition[C]SPIE, 2013, 8898: 88980N.

    [11] C Lei, Y Gu, Z Chen. Incoherent beam combining of fiber lasers by an all-fiber 7×1 signal combiner at a power level of 14 kW. Opt Express, 26, 10421-10427(2018).

    [12] A Sanchez-Rubio, T Y Fan, S J Augst. Wavelength beam combining for power and brightness scaling of laser systems. Lincoln Laboratory Journal, 20, 52-66(2014).

    [13] [13] Augst S J, Redmond S M, Yu C X, et al. Sanchez. Coherent spectral beam combining of fiber lasers[C]SPIE, 2012, 8237: 823704.

    [14] R K Huang, B Chann, L J Missaggia. Sanchez-Rubio. High-brightness wavelength beam combined semiconductor laser diode arrays. IEEE Photonics Technology Letters, 19, 209-211(2007).

    [15] B Chann, A K Goyal, T Y Fan. Efficient, high-brightness wavelength-beam-combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating. Opt Lett, 31, 1253-1255(2006).

    [16] T H Loftus, A M Thomas, P R Hoffman. Spectral beam-combining fiber lasers for high-average-power applications. IEEE J Sel Top Quantum Electron, 13, 487-497(2007).

    [17] [17] Loftus T H, Liu A, Hoffman P R, et al. 258 W of spectrally beam combined power with neardiffraction limited beam quality[C]SPIE, 2006, 6102: 61020S.

    [18] T H Loftus, A Liu, P R Hoffman. 522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality. Opt Lett, 32, 349-351(2007).

    [19] [19] Afzal R S, Honea E, SavageLeuchs M, et al. Spectrally beam combined fiber lasers f high power, efficiency brightness [C]SPIE, 2012, 8547: 854706.

    [20] [20] Honea E, Afzal R S, SavageLeuchs M, et al. Advances in fiber laser spectral beam combining f power scaling[C]SPIE, 2016, 9730: 97300Y.

    [21] [21] Reich M, Limpert J, Liem A, et al. Spectral beam combining of ytterbiumdoped fiber lasers with a total output power of 100 W[C]Europhys Conf Abstracts, 2004: 28C Fib10137.

    [22] S Klingebiel, F Röser, B Ortac. Spectral beam combining of Yb-doped fiber lasers with high efficiency. J Opt Soc Am B, 24, 1716-1720(2007).

    [23] T Schreiber, C Wirth, O Schmidt. Incoherent beam combining of coutinuous-wave and pulsed Yb-doped fiber amplifiers. IEEE J Sel Top Quantum Electron, 15, 354-360(2009).

    [24] C Wirth, O Schmidt, I Tsybin. High average power spectral beam combining of four fiber amplifiers to 8.2 kW. Opt Lett, 36, 3118-3120(2011).

    [25] J Decker, P Crump, J Fricke. 25-W monolithic spectrally stabilized 975 nm minibars for dense spectral beam combining. IEEE Photonics Tech Lett, 27, 1675-1678(2015).

    [26] [26] Witte U, Traub M, Meo A D, et al. Compact 35 µm fiber coupled diode laser module based on dense wavelength division multiplexing of NBA minibars[C]SPIE, 2017, 9733: 97330H.

    [27] A Sevian, O Andrusyak, I Ciapurin. Efficient power scaling of laser radiation by spectral beam combining. Opt Lett, 33, 384-386(2008).

    [28] [28] Drachenberg D, Divliansky I, Smirnov V, et al. High power spectral beam combining of fiber lasers with ultra high spectral density by thermal tuning of volume Bragg gratings [C]SPIE, 2011, 7914: 79141F.

    [29] D Ott, I Divliansky, B Anderson. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating. Opt Express, 21, 29620-29627(2013).

    [30] [30] Regelskis K, Hou K C, Raciukaitis G, et al. Spatialdispersionfree spectral beam combining of high power pulsed Ybdoped fiber lasers[C]Conference on Lasers ElectroOpticsQuantum Electronics Laser Science Conference Photonic Applications Systems Technologies, OSA Technical Digest, 2008: CMA4.

    [31] Yi Ma, Hong Yan, Wanjing Peng. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers. Chinese Journal of Lasers, 43, 0901009(2016).

    [32] H Meng, T Sun, H Tan. High-brightness spectral beam combining of diode laser array stack in an external cavity. Opt Express, 23, 21819-21824(2015).

    [33] Y Zheng, Y Yang, J Wang. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation. Opt Express, 24, 12064-12071(2016).

    [34] J Zhang, H Peng, X Fu. CW 50W/M2 = 10.9 diode laser source by spectral beam combining based on a transmission grating. Opt Express, 21, 3627-3632(2013).

    [35] Man Jiang, Pengfei Ma, Pu Zhou. Beam quality in spectral beam combination based on multi-layer dielectric grating. Acta Physica Sinica, 65, 104203(2016).

    [36] F Chen, J Ma, C Wei. 10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters. Opt Express, 25, 32783-32791(2017).

    [37] Ye Zheng, Yifeng Yang, Xiang Zhao. Research Progress on Spectral Beam Combining Technology of High-Power Fiber Lasers. Chinese Journal of Lasers, 44, 0201018(2017).

    [38] Jun Zhang, Yongyi Chen, Li Qin. Advances in high power high beam quality diode lasers. Chinese Science Bulletin, 62, 3719-3728(2017).

    [39] K Nosu, H Ishio, K Hashimoto. Multireflection optical multi/demultiplexer using interference filters. Electron Lett, 15, 414-415(1979).

    [40] [40] Minott P O, Abshire J B. Grating rhomb diode laser power combiner[C]SPIE, 1987, 756: 3849.

    [41] [41] Rall J A R, Spadin P L, Zimmerman R K, et al. Test results of a diffraction grating beam combiner[C]FreeSpace Laser Commun Technol, 1990, 1218: 264275.

    [42] I H White. A multichannel grating cavity laser for wavelength division multiplexing applications. J Lightwave Technol, 9, 893-899(1991).

    [43] M C Farries, A C Carter, G G Jones. Tunable multiwavelength semiconductor laser with single fibre output. Electron Lett, 27, 1498-1499(1991).

    [44] B Chann, R K Huang, L J Missaggia. High-power, near-diffraction-limited diode laser arrays by wavelength beam combining. Opt Lett, 30, 2104-2106(2005).

    [45] [45] Cook C C, Fan T Y. Spectral beam combining of Ybdoped fiber lasers in an external cavity[C]OSA, 1999, 26: 163–166.

    [46] V Daneu, A Sanchez, T Y Fan. Spectral beam combining of a broad-stripe diode laser array in an external cavity. Opt Lett, 25, 405-407(2000).

    [47] E J Bochove. Theory of spectral beam combining of fiber lasers. IEEE J Quantum Electron, 38, 432-445(2002).

    [48] S J Augst, A K Goyal, R L Aggarwal. Wavelength beam combining of ytterbium fiber lasers. Opt Lett, 28, 331-333(2003).

    [49] T Y Fan. Laser beam combining for high-power, high-radiance sources. IEEE J Sel Top Quantum Electron, 11, 567-577(2005).

    [50] D R Drachenberg, O Andrusyak, G Venus. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers. Appl Opt, 53, 1242-1246(2014).

    [51] C Wirth, O Schmidt, I Tsybin. 2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers. Opt Express, 17, 1178-1183(2009).

    [52] [52] Newswire P R. Lockheed Martin Demonstrates Weapons Grade High Power Fiber Laser [EBOL]. [20140128]. https:news.lockheedmartin..

    [53] Yan Zhang, Bin Zhang, Songjun Zhu. Analysis of the property of the beam after spectral beam combining. Acta Physica Sinica, 56, 4590-4595(2007).

    [54] Suqin Yin, Bin Zhang. Analysis of the output characteristics of high-power fiber lasers after spectral beam combination. Acta Optica Sinica, 31, 0214002(2011).

    [55] Yi Yu, Weimin Wang, Yan Lu. Simulation of spectrally beam combined diode laser based on grating-cavity. High Power Laser and Particle Beams, 20, 189-192(2008).

    [56] Bo Liu, Xue. Han Junting Zhang. Wavelength beam combining of laser diode array by wavelength-chirped volume Bragg grating external cavity. High Power Laser and Particle Beams, 20, 1057-1062(2008).

    [57] Shibing Pu, Zongfu Jiang, Xiaojun Xu. Numerical analysis of spectral beam combining by volume Bragg grating. High Power Laser and Particle Beams, 20, 721-724(2008).

    [58] Benjian Shen, Guangwei Zheng, Jichun Tan. Spectral beam combining by phase-shifted reflective volume Bragg gratings. Chinese Journal of Lasers, 12, 3056-3059(2010).

    [59] Shengbao Zhan, Shanghong Zhao, Shouchun Ni. Design of spectral beam combining based on reflecting volume Bragg grating. High Power Laser and Particle Beams, 4, 929-933(2011).

    [62] Taidou Zhou, Xiaobao Liang, Chao Li. 2.5 kW average power, two-channel spectral-beam-combined output based on transmitting volume Bragg grating. Aca Physica Sinica, 66, 084204(2017).

    [64] Z Wu, Z Zhong, L Yang. Beam properties in a spectral beam combining system based on trapezoidal multilayer dielectric gratings. J Opt Soc Am B, 33, 171-179(2016).

    [65] L Yang, Z Wu, B Zhang. Influence of thermal deformation of a multilayer dielectric grating on a spectrally combined beam. Appl Opt, 55, 9091-9100(2016).

    [66] J Chen, Y Zhang, Y Wang. Polarization-independent broadband beam combining grating with measured over 98% diffraction efficiency from 1023nm to 1080nm. Opt Lett, 42, 4016-4019(2017).

    [67] J Tian, J Zhang, H Peng. High power diode laser source with a transmission grating for two spectral beam combining. Optik, 192, 162918(2019).

    [68] F Sun, S Shu, Y Zhao. High-brightness diode lasers obtained via off-axis spectral beam combining with selective feedback. Opt Express, 26, 21813-21818(2018).

    [69] [69] Sun Fangyuan. Investigation of high beam quality laser by external cavity combination technology[D]. Beijing: University of Chinese Acadeny of Sciences, 2018. (in Chinese)

    [70] [70] Jiang Man. Study on the key technique of fiber laser spectral beam combining [D]. Changsha: National University of Defense Technology, 2017. (in Chinese)

    [71] F Chen, J Ma, R Zhu. Coupling efficiency model for spectral beam combining of high-power fiber lasers calculated from spectrum. Appl Opt, 56, 2574-2579(2017).

    [72] F Chen, J Zhang, J Ma. Beam quality analysis and optimization for 10 kW-level spectral beam combination system. Opt Commun, 444, 45-55(2019).

    [73] [73] Liu Q, Jin Y, Wu J, et al. Fabrication of the polarization independent spectral beam combining grating [C]SPIE, 2016, 10255: 1025514

    [74] X Mao, C Li, K Qiu. Design and fabrication of 1300-line/mm polarization-independent reflection gratings for spectral beam combining. Opt Commun, 458, 124883-4(2020).

    [75] Z Wu, Y Xu, Y Huang. Influence of process errors of dielectric gratings on beam properties in transmission spectral-beam-combining systems. Appl Opt, 58, 4300-4305(2019).

    [76] O Schmidt, C Wirth, D Nodop. Spectral beam combination of fiber amplified ns-pulses by means of interference filters. Opt Express, 17, 22974-22982(2009).

    [77] H Jiao, X Niu, X Zhang. Design and fabrication of a superior nonpolarizing long-wavelength pass edge filter applied in laser beam combining technology. Appl Opt, 59, A162-A166(2020).

    [78] [78] Efimov O M, Glebov L B, Smirnov V I. High efficiency volume diffractive elements in photothermorefractive glass: US, 6673497 [P]. 20040106.

    [79] O Andrusyak, V Smirnov, G Venus. Spectral combining and coherent coupling of lasers by volume Bragg gratings. IEEE J Select Top Quantum Electron, 15, 344-353(2009).

    [80] [80] rusyak O, Ciapurin I, Smirnov V, et al. Spectral beam combining of fiber lasers with increased channel density[C]SPIE, 2007, 6453: 64531L.

    [81] [81] Hamilton C E, Tidwell S C, Lowenthal D D. Highpower laser source with spectrally beamcombined diode laser bars [C]SPIE, 2004, 5336: 110.

    [82] D Vijayakumar, O B Jensen, R Ostendorf. Spectral beam combining of a 980 nm tapered diode laser bar. Opt Express, 18, 893-8(2010).

    [83] J Hecht. Beam combining cranks up the power. Laser Focus World, 48, 41-43(2012).

    [84] [84] Huang R K, Chann B, Burgess J, et al. Teradiode’s high brightness semiconduct lasers [C]SPIE, 2016, 9730: 97300C.

    [85] U Witte, F Schneider, M Traub. kW-class direct diode laser for sheet metal cutting based on DWDM of pump modules by use of ultra-steep dielectric filters. Opt Express, 24, 22917-22929(2016).

    [86] [86] Huang R K, Chann B, Glenn J D. Ultrahigh brightness wavelengthstabilized kWclass fiber coupled diode laser[C]SPIE, 2011, 7918: 791810.

    [87] [87] Wood M. Laser beam technology development application [C]7th Alta Brillanza Wkshop, 2015: 24–25.

    [88] [88] Zimer H, Haas M, Nagel S, et al. Spectrally stabilized combined diode lasers[C]IEEE Conf on High Power Diode Lasers Systems, 2015: 31–32.

    [89] [89] Heinemann S, Fritsche H, Kruschke B, et al. Compact high brightness diode laser emitting 500W from a 100 μm fiber[C]SPIE, 2013, 8605: 86050Q.

    [90] [90] Unger A, Uthoff R, Stoiber M, et al. Tailed bar concepts f 10 mmmrad fiber coupled modules scalable to kWclass direct diode lasers[C]SPIE, 2015, 9348: 934809.

    [91] S Hengesbach, N Krauch, C Holly. High-power dense wavelength division multiplexing of multimode diode laser radiation based on volume Bragg gratings. Opt Lett, 38, 3154-3157(2013).

    [92] [92] Fritsche H, Krusche B, Koch R, et al. High brightness, direct diode laser with kW output power [C]SPIE, 2014, 8965: 89650G.

    [93] [93] Ferrario F, Fritsche H, Grohe A, et al. Building block diode laser concept f high brightness laser output in the kW range its applications [C]SPIE, 2016, 9730: 97300G.

    [94] [94] Witte U, Schneider F, Holly C, et al. kWclass direct diode laser f sheet metal cutting based on commercial pump modules [C]SPIE, 2017, 10086: 1008608.

    [95] [95] Zimer H, Haas M, Ried S, et al. Thin film filter wavelengthlocked laser cavity f spectral beam combining of diode laser arrays [C]Photonics Conference, 2014: 230231.

    [96] M Haas, S Rauch, S Nagel. Thin-film filter wavelength-stabilized, grating combined, high-brightness kW-class direct diode laser. Opt Express, 25, 17657-17670(2017).

    [97] [97] Strohmaier S G, Erbert G, MeissnerSchenk A H, et al. kWclass diode laser bars[C]SPIE, 2017, 10086: 100860C.

    [98] J Zhang, H Y Peng, Y Liu. Hundred-watt diode laser source by spectral beam combining. Laser Phys Lett, 11, 125803(2014).

    [99] Z Zhu, L Gou, M H Jiang. High beam quality in two directions and high efficiency output of a diode laser array by spectral-beam-combining. Opt Express, 22, 17804-17809(2014).

    [100] Huicheng Meng, Deyong Wu, Hao Tan. Experimental study on high brightness and narrow band of diode laser by spectral beam combining of grating-external cavity. Chinese Journal of Lasers, 42, 0302003(2015).

    [101] H Meng, X Ruan, W Du. Scaling the spectral beam combining channel by multiple diode laser stacks in an external cavity. Laser Phys Lett, 14, 045811(2017).

    [102] X Lin, G Lin, P Zhao. Generation of high brightness diode laser by using spectral and polarization beam combination. Opt and Laser Tech, 116, 219-223(2019).

    [103] O Schmidt, T V Andersen, J Limpert. 187 W, 3.7 mJ from spectrally combined pulsed 2 ns fiber amplifiers. Opt Lett, 34, 226-228(2009).

    [104] O Schmidt, C Wirth, I Tsybin. Average power of 1.1 kW from spectrally combined, fiber-amplifiered, nanosecond-pulsed sources. Opt Lett, 34, 1567-1569(2009).

    [105] [105] Newswire P R. Turning up the heat: latest evolution of Lockheed Martin laser weapon system stops truck in field test [EBOL]. [20150303]. https:news.lockheedmartin.comingUptheHeatLatestEvolutionofLockheedMartinLaserWeaponSystemStopsTruckinFieldTest.

    [106] [106] Newswire P R. Lockheed Martin to deliver wld recdsetting 60 kW laser to U.S. Army [EBOL]. [20170316]. http:news.lockheedmartin.com.

    [107] [107] Newswire P R. Team Dyics Receives Contract F Next Phase Of 100 KWClass Laser Weapon System F U.S. Army [EBOL]. [20180806]. https:news.lockheedmartin.com.

    [108] X Liang, L Chen, C Li. High average power spectral beam combining employing volume Bragg gratings. High Power Laser and Particle Beams, 27, 071012(2015).

    [109] T Zhou, X Liang, C Li. Spectral beam combining of fiber lasers by using reflecting volume Bragg gratings. Chin Phys Lett, 33, 124205(2016).

    [110] Yi Ma, Hong Yan, Fei Tian. Common aperture spectral beam combination of fiber lasers with 5 kW power high-efficiency and high-quality output. High Power Laser and Particle Beams, 27, 7-9(2015).

    [111] M Jiang, P Ma, P Zhou. Spectral beam combining of fiber laser with wavelength separation broader than 60 nm. Laser Physics, 26, 115104(2016).

    [112] X Wang, X Jin, P Zhou. 105 W ultra-narrowband nanosecond pulsed laser at 2 μm based on a monolithic Tm-doped fiber MOPA. Opt Express, 23, 4233-4241(2015).

    [113] X Jin, Z Lou, H Zhang. Random distributed feedback fiber laser at 2.1 μm. Opt Lett, 41, 4923-4926(2016).

    [114] X Jin, E Lee, J Luo. High-efficiency ultrafast Tm-doped fiber amplifier based on resonant pumping. Opt Lett, 43, 1431-1434(2018).

    [115] R A Sims, C C C Willis, P Kadwani. Spectral beam combining of 2 μm Tm fiber laser systems. Opt Commun, 284, 1988-1991(2011).

    [116] [116] Yilmaz S, Ottenhues C, Theeg T, et al. Singlemode spectral beam combining of high power Tmdoped fiber lasers with WDM cades [C]SPIE, 2016, 9728: 97280O.

    [117] J Limpert, F Röser, S Klingebiel. The rising power of fiber lasers and amplifiers. IEEE J Sel Top Quantum Electron, 13, 537-545(2007).

    [118] [118] Liu A, Mead R, Vatter T, et al. Spectral beam combining of high power fiber lasers[C]SPIE 2004, 5335: 8188.

    [119] P Madasamy, D R Jander, C D Brooks. Dual-grating spectral beam combining of high-power fiber lasers. IEEE J Sel Top Quantum Electron, 15, 337-343(2009).

    [120] Rongtao Su, Pengfei Ma, Xiaolin Wang. 2.43kw power output of linearly polarized narrow linewidth single mode fiber amplifier. Chinese Journal of Lasers, 44, 0315001(2017).

    [121] P Ma, H Xiao, D Meng. High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression. High Power Laser Science and Engineering, 6, e57(2018).

    [122] [122] Platonov N, Yagodkin R, Cruz J, et al. 1.5 kW linear polarized on PM fiber 2 kW on nonPM fiber narrow linewidth CW diffractionlimited fiber amplifier [C]SPIE, 2017, 10085: 100850M.

    [123] Yi Ma, Hong Yan, Yinhong Sun. Recent progress of key technologies for spectral beam combining of fiber laser with dual-gratings configuration. Infrared and Laser Engineering, 47, 0103002(2018).

    [124] [124] rusyak O, Smimov V, Venus G, et al. Applications of volume Bragg gratings f spectral control beam combining of high power fiber lasers [C]SPIE, 2009, 7195: 71951Q.

    [125] [125] Fan T Y, Goyal A, Sanchez A. Higher power spectrally combined laser systems related methods. US Patent 6, 697, 192, Feb. 24, 2004.

    [126] M Fridman, V Eckhouse, N Davidson. Simultaneous coherent and spectral addition of fiber lasers. Opt Lett, 33, 648-650(2008).

    [127] [127] Jain A, Drachenberg D, rusyak O, et al. Coherent spectral beam combining of fiber lasers using volume Bragg gratings [C]SPIE, 2010, 7686: 768615.

    [128] P Ma, M Jiang, X Wang. Hybrid Beam Combination by active phasing and bandwidth-controlled dichromatic mirror. IEEE Photonics Technology Letters, 27, 2099-2102(2015).

    [129] H Yan, Y Man, Y Sun. Scalable hybrid beam combining of kilowatt fiber amplifiers into a 5-kW beam. Opt Commun, 397, 95-99(2017).

    [130] [130] McNaught S J, Asman C P, Injeyan H, et al. 100kW coherently combined Nd: YAG MOPA laser array [C]Frontiers in Optics 2009Laser Science XXVFall 2009 OSA Optics &Photonics Technical Digest, 2009: FThD2.

    [131] Y L Lim, P Dean, M Nikolic. Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers. Applied Physics Letters, 99, 156-1(2011).

    [132] P D Grant, S R Laframboise, R Dudek. Terahertz free space communications demonstration with quantum cascade laser and quantum well photodetector. Electronics Letters, 45, 952-954(2009).

    [133] P I Abramov, E V Kuznetsov, L A Skvortsov. Skvortsova. Quantum-Cascade Lasers in Medicine and Biology (Review). Journal of Applied Spectroscopy, 86, 1-26(2019).

    [134] G Liang, T Liu, Wang Q J and. Recent Developments of Terahertz Quantum Cascade Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1-18(2017).

    [135] Y J Han, J Partington, R C Pun. Gas spectroscopy through multimode self-mixing in a double-metal terahertz quantum cascade laser. Opt Lett, 43, 5933-5936(2018).

    [136] X Chen, X Liu, X Guo. THz near-field imaging of extreme subwavelength metal structures. ACS Photonics, 7, 687-694(2020).

    [137] R Köhler, A Tredicucci, F Beltram. Terahertz semiconductor-heterostructure laser. Nature, 417, 156(2002).

    [138] B S Williams. Terahertz quantum-cascade lasers. Nature Photonics, 1, 517-525(2007).

    [139] C Deutsch, M A Kainz, M Krall. High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers. Acs Photonics, 4, 957-962(2017).

    [140] H Zhu, H Zhu, F Wang. Terahertz master-oscillator power-amplifier quantum cascade laser with a grating coupler of extremely low reflectivity. Opt Express, 26, 1942-1953(2018).

    [141] Y Jin, Q Zhu, J L Reno. High power edge-cum-surface emitting terahertz laser arrays phased locked by vacuum guided plasmon waves. Applied Physics Letters, 116, 131103(2020).

    [142] Y Jin, J L Reno, S Kumar. Phase-locked terahertz plasmonic laser array with 2 W output power in a single spectral mode. Optica, 7, 708-715(2020).

    [143] T Kao, Q Hu, J L Reno. Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers. Applied Physics Letters, 96, 101106(2010).

    CLP Journals

    [1] Ke Wang, Jun Cai, Yu Ding, Qili Hu, Le Zhang. Study on polarization beam combining experimental of mid-infrared quantum cascade laser[J]. Infrared and Laser Engineering, 2022, 51(8): 20210679

    [2] Zhuang Jin, Jing Li, Menghua Jiang, Youqiang Liu, Wenbin Qin, Yinhua Cao, Zhiyong Wang. Influence of output mirror free external cavity spectral beam combining structure on feedback efficiency[J]. Infrared and Laser Engineering, 2023, 52(3): 20220446

    Tools

    Get Citation

    Copy Citation Text

    Man Jiang, Pengfei Ma, Rongtao Su, Can Li, Jian Wu, Yanxing Ma, Pu Zhou. Research progress and prospect of spectral beam combining (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201053

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Advanced Laser Technology

    Received: Sep. 10, 2020

    Accepted: --

    Published Online: Jan. 14, 2021

    The Author Email: Zhou Pu (zhoupu203@163.com)

    DOI:10.3788/IRLA20201053

    Topics