Journal of the Chinese Ceramic Society, Volume. 50, Issue 2, 307(2022)
Thermal Transport Engineering of Several Emerging Thermoelectric Materials and Thermal Logic Devices
[1] [1] CAHILL D G, BRAUN P V, CHEN G, et al. Nanoscale thermal transport. II. 2003-2012[J]. Appl Phys Rev, 2014, 1(1): 011305.
[2] [2] KUMAR M, RANI S, SINGH Y, et al. Tuning the thermoelectric material's parameter: a comprehensive review[J]. J Nanosci Nanotechnol, 2020, 20(6): 3636-3646.
[3] [3] LI N, REN J, WANG L, et al. Colloquium: phononics: manipulating heat flow with electronic analogs and beyond[J]. Rev Mod Phys, 2012, 84(3): 1045-1066.
[4] [4] ROBERTS N A, WALKER D. A review of thermal rectification observations and models in solid materials[J]. Int J Therm Sci, 2011, 50(5): 648-662.
[5] [5] YANG N, ZHANG G, LI B. Thermal rectification in asymmetric graphene ribbons[J]. Appl Phys Lett, 2009, 95(3): 033107.
[6] [6] WANG L, LI B. Thermal memory: a storage of phononic information[J]. Phys Rev Lett, 2008, 101(26): 267203.
[7] [7] XIE R, BUI C T, VARGHESE B, et al. An electrically tuned solid-state thermal memory based on metal-insulator transition of single-crystalline VO2 nanobeams[J]. Adv Funct Mater, 2011, 21(9): 1602-1607.
[8] [8] KUBYTSKYI V, BIEHS S A, BEN ABDALLAH P. Radiative bistability and thermal memory[J]. Phys Rev Lett, 2014, 113(7): 074301.
[9] [9] NISHIKAWA K, YATSUGI K, KISHIDA Y, et al. Temperature-selective emitter[J]. Appl Phys Lett, 2019, 114(21): 211104.
[10] [10] WANG Y S, LIU Z C, YE J J, et al. Thermal transport in molecular beam epitaxy grown Si1-xGex alloy films with a full spectrum of composition (x=0-1)[J]. J Appl Phys, 2019, 125(21): 215109.
[11] [11] DI C, PAN J H, DONG S T, et al. Ultralow cross-plane lattice thermal conductivity caused by Bi-O/Bi-O interfaces in natural superlattice-like single crystals[J]. CrystEngComm, 2019, 21(41): 6261-6268.
[12] [12] DI C, YU Y S, LUO Y C, et al. Ultralow lattice thermal conductivity of A0.5RhO2 (A=K, Rb, Cs) induced by interfacial scattering and resonant scattering[J]. J Phys Chem C, 2021, 125(21): 11648-11655.
[13] [13] ZHANG Y Y, DI C, LV Y Y, et al. One-order decrease of thermal conductivity in nanostructured ZrTe5 and HfTe5 crystals[J]. Cryst Growth Des, 2019, 20(2): 680-687.
[14] [14] CAO L, PAN J, ZHANG H, et al. One-order decreased lattice thermal conductivity of SnSe crystals by the introduction of nanometer SnSe2 secondary phase[J]. J Phys Chem C, 2019, 123(45): 27666-27671.
[16] [16] LI Q, WEI J, SUN H, et al. Temperature dependent thermal conductivity and transition mechanism in amorphous and crystalline Sb2Te3 thin films[J]. Sci Rep, 2017, 7(1): 1-10.
[17] [17] AMATO M, PALUMMO M, RURALI R, et al. Silicon-germanium nanowires: chemistry and physics in play, from basic principles to advanced applications[J]. Chem Rev, 2014, 114(2): 1371-1412.
[18] [18] CHEAITO R, DUDA J C, BEECHEM T E, et al. Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films[J]. Phys Rev Lett, 2012, 109(19): 195901.
[19] [19] DRESSELHAUS M S, CHEN G, TANG M Y, et al. New directions for low-dimensional thermoelectric materials[J]. Adv Mater, 2007, 19(8): 1043-1053.
[20] [20] LIAO M H, CHEN C H. The investigation of optimal Si-SiGe hetero-structure thin-film solar cell with theoretical calculation and quantitative analysis[J]. IEEE Trans Nanotechnol, 2011, 10(4): 770-773.
[21] [21] CARRUTHERS J, GEBALLE T, ROSENBERG H, et al. The thermal conductivity of germanium and silicon between 2 and 300 K[J]. P Roy Soc A-Math Phy, 1957, 238(1215): 502-514.
[22] [22] GLASSBRENNER C J, SLACK G A. Thermal conductivity of silicon and germanium from 3 K to the melting point[J]. Phys Rev, 1964, 134(4A): A1058.
[23] [23] DISALVO F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285(5428): 703-706.
[24] [24] ZHANG X, ZHAO L D. Thermoelectric materials: energy conversion between heat and electricity[J]. J Materiomics, 2015, 1(2): 92-105.
[25] [25] WAN C, WANG Y, WANG N, et al. Low-thermal-conductivity (MS)1+x(TiS2)2 (M= Pb, Bi, Sn) misfit layer compounds for bulk thermoelectric materials[J]. Materials, 2010, 3(4): 2606-2617.
[26] [26] BANIK A, BISWAS K. Synthetic nanosheets of natural van der waals heterostructures[J]. Angew Chem, 2017, 129(46): 14753-14758.
[27] [27] SAMANTA M, GUIN S N, BISWAS K. Ultrathin few layer oxychalcogenide BiCuSeO nanosheets[J]. Inorg Chem Front, 2017, 4(1): 84-90.
[28] [28] LI L, YAN X J, DONG S T, et al. Ultra-low thermal conductivities along c-axis of naturally misfit layered Bi2[AE]2Co2Oy (AE= Ca, Ca0.5Sr0.5, Sr, Ba) single crystals[J]. Appl Phys Lett, 2017, 111(3): 033902.
[29] [29] CAHILL D G, WATSON S K, POHL R O. Lower limit to the thermal conductivity of disordered crystals[J]. Phys Rev B, 1992, 46(10): 6131-6140.
[30] [30] VONESHEN D, REFSON K, BORISSENKO E, et al. Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate[J]. Nat Mater, 2013, 12(11): 1028-1032.
[31] [31] NIEDZIELA J L, BANSAL D, MAY A F, et al. Selective breakdown of phonon quasiparticles across superionic transition in CuCrSe2[J]. Nat Phys, 2019, 15(1): 73-78.
[32] [32] DAMAY F, PETIT S, ROLS S, et al. Localised Ag(+) vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2[J]. Sci Rep, 2016, 6: 23415.
[33] [33] YING P, LI X, WANG Y, et al. Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α-MgAgSb thermoelectric materials[J]. Adv Funct Mater, 2017, 27(1): 1604145.
[34] [34] LIU H, SHI X, XU F, et al. Copper ion liquid-like thermoelectrics[J]. Nat Mater, 2012, 11(5): 422-425.
[35] [35] CALLAWAY J. Model for lattice thermal conductivity at low temperatures[J]. Phys Rev, 1959, 113(4): 1046.
[36] [36] CALLAWAY J, VON BAEYER H C. Effect of point imperfections on lattice thermal conductivity[J]. Phys Rev, 1960, 120(4): 1149.
[37] [37] YANG J, MORELLI D, MEISNER G, et al. Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites[J]. Phys Rev B, 2003, 67(16): 165207.
[38] [38] HOODA M, YADAV C. Enhanced thermopower and low thermal conductivity in p-type polycrystalline ZrTe5[J]. Appl Phys Lett, 2017, 111(5): 053902.
[39] [39] GUO J, HUANG Y, WU X, et al. Thickness-dependent in-plane thermal conductivity and enhanced thermoelectric performance in p-type ZrTe5 nanoribbons[J]. Phys Status Solidi-R, 2019, 13(3): 1800529.
[40] [40] ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J]. Nature, 2014, 508(7496): 373-377.
[41] [41] LI C W, HONG J, MAY A F, et al. Orbitally driven giant phonon anharmonicity in SnSe[J]. Nat Phys, 2015, 11(12): 1063-1069.
[42] [42] JIN M, SHAO H, HU H, et al. Growth and characterization of large size undoped p-type SnSe single crystal by horizontal bridgman method[J]. J Alloy Compd, 2017, 712: 857-862.
[43] [43] LEE Y K, AHN K, CHA J, et al. Enhancing p-type thermoelectric performances of polycrystalline SnSe via tuning phase transition temperature[J]. J Amer Chem Soc, 2017, 139(31): 10887-10896.
[44] [44] FU Y, XU J, LIU G Q, et al. Enhanced thermoelectric performance in p-type polycrystalline SnSe benefiting from texture modulation[J]. J Mater Chem C, 2016, 4(6): 1201-1207.
[45] [45] ZHAO L D, TAN G, HAO S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe[J]. Science, 2016, 351(6269): 141-144.
[46] [46] PENG K, LU X, ZHAN H, et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals[J]. Energy Environ Sci, 2016, 9(2): 454-460.
[47] [47] JIN M, CHEN Z, TAN X, et al. Charge transport in thermoelectric SnSe single crystals [J]. ACS Energy Lett, 2018, 3(3): 689-694.
[48] [48] ZHOU Y, LI W, WU M, et al. Influence of defects on the thermoelectricity in SnSe: A comprehensive theoretical study[J]. Phys Rev B, 2018, 97(24): 245202.
[49] [49] LI Z, XIAO C, FAN S, et al. Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO[J]. J Amer Chem Soc, 2015, 137(20): 6587-6593.
[50] [50] MENG T, SUN Y, TONG C, et al. Solid-state thermal memory of temperature-responsive polymer induced by hydrogen bonds[J]. Nano Lett, 2021, 21(9): 3843-3848.
Get Citation
Copy Citation Text
ZHAN Ruonan, DI Chen, GENG Zhiming, ZHANG Enrui, YUAN Ziyuan, YAN Xuejun, ZHAO Yang, YAO Shuhua, LU Hong, LU Minghui. Thermal Transport Engineering of Several Emerging Thermoelectric Materials and Thermal Logic Devices[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 307
Special Issue:
Received: Sep. 15, 2021
Accepted: --
Published Online: Nov. 23, 2022
The Author Email: Ruonan ZHAN (zhanruonan1997@163.com)
CSTR:32186.14.