Acta Optica Sinica, Volume. 42, Issue 17, 1704002(2022)

Research Progress of X-Ray Detection and Imaging Based on Emerging Metal Halide Semiconductors and Scintillators

Wenbo Ma, Cuifang Kuang, Xu Liu, and Yang Yang*
Author Affiliations
  • State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • show less
    References(139)

    [1] van Eijk C W E. Inorganic scintillators in medical imaging[J]. Physics in Medicine and Biology, 47, R85-R106(2002).

    [2] Haff R P, Toyofuku N. X-ray detection of defects and contaminants in the food industry[J]. Sensing and Instrumentation for Food Quality and Safety, 2, 262-273(2008).

    [3] Duan X H, Cheng J P, Zhang L et al. X-ray cargo container inspection system with few-view projection imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 598, 439-444(2009).

    [4] Spahn M. X-ray detectors in medical imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 731, 57-63(2013).

    [5] Chapman H N, Fromme P, Barty A et al. Femtosecond X-ray protein nanocrystallography[J]. Nature, 470, 73-77(2011).

    [6] Als-Nielsen J, McMorrow D[M]. Elements of modern X-ray physics(2011).

    [7] Moses W W[M]. Scintillator requirements for medical imaging(1999).

    [8] Lin E C. Radiation risk from medical imaging[J]. Mayo Clinic Proceedings, 85, 1142-1146(2010).

    [9] Knoll G F[M]. Radiation detection and measurement(2010).

    [10] Rowlands J A. Material change for X-ray detectors[J]. Nature, 550, 47-48(2017).

    [11] Zheng X P, Chen B, Dai J et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nature Energy, 2, 17102(2017).

    [12] Xiao Z G, Kerner R A, Zhao L F et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites[J]. Nature Photonics, 11, 108-115(2017).

    [13] Dou L T, Yang Y, You J B et al. Solution-processed hybrid perovskite photodetectors with high detectivity[J]. Nature Communications, 5, 5404(2014).

    [14] Saliba M, Wood S M, Patel J B et al. Structured organic-inorganic perovskite toward a distributed feedback laser[J]. Advanced Materials, 28, 923-929(2016).

    [15] Yang X H, Wang Q, Xiao Z W et al. Highly efficient green-emitting devices based on mixed-cation perovskites[J]. Acta Optica Sinica, 39, 1016002(2019).

    [16] Yin L Q, Zhang D D, Wang S et al. Research on current stability of white LED devices based on CsPbBr3 perovskite quantum dots[J]. Acta Optica Sinica, 41, 1923002(2021).

    [17] Wei H T, Fang Y J, Mulligan P et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 10, 333-339(2016).

    [18] Pan W C, Wu H D, Luo J J et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit[J]. Nature Photonics, 11, 726-732(2017).

    [19] Zhuang R Z, Wang X J, Ma W B et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response[J]. Nature Photonics, 13, 602-608(2019).

    [20] Wei W, Zhang Y, Xu Q et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging[J]. Nature Photonics, 11, 315-321(2017).

    [21] Kim Y C, Kim K H, Son D Y et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 550, 87-91(2017).

    [22] Yakunin S, Sytnyk M, Kriegner D et al. Detection of X-ray photons by solution-processed lead halide perovskites[J]. Nature Photonics, 9, 444-449(2015).

    [23] Chen Q S, Wu J, Ou X Y et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 561, 88-93(2018).

    [24] Cao F, Yu D J, Ma W B et al. Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept[J]. ACS Nano, 14, 5183-5193(2020).

    [25] Zhu W J, Ma W B, Su Y R et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators[J]. Light: Science & Applications, 9, 112(2020).

    [26] Meyer-Ilse W, Hamamoto D, Nair A et al. High resolution protein localization using soft X-ray microscopy[J]. Journal of Microscopy, 201, 395-403(2001).

    [27] Su Y R, Ma W B, Yang Y. Perovskite semiconductors for direct X-ray detection and imaging[J]. Journal of Semiconductors, 41, 051204(2020).

    [28] Martin J E[M]. Physics for radiation protection: a handbook(2006).

    [29] Wei H T, Huang J S. Halide lead perovskites for ionizing radiation detection[J]. Nature Communications, 10, 1066(2019).

    [30] Kasap S, Frey J B, Belev G et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors[J]. Sensors, 11, 5112-5157(2011).

    [31] Devanathan R, Corrales L R, Gao F et al. Signal variance in gamma-ray detectors: a review[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 565, 637-649(2006).

    [32] Kabir M Z. Effects of charge carrier trapping on polycrystalline PbO X-ray imaging detectors[J]. Journal of Applied Physics, 104, 074506(2008).

    [33] Wu H D, Ge Y S, Niu G D et al. Metal halide perovskites for X-ray detection and imaging[J]. Matter, 4, 144-163(2021).

    [34] Klein C A. Bandgap dependence and related features of radiation ionization energies in semiconductors[J]. Journal of Applied Physics, 39, 2029-2038(1968).

    [35] Alig R C, Bloom S. Electron-hole-pair creation energies in semiconductors[J]. Physical Review Letters, 35, 1522-1525(1975).

    [36] Maddalena F, Tjahjana L, Xie A Z et al. Inorganic, organic, and perovskite halides with nanotechnology for high-light yield X- and γ-ray scintillators[J]. Crystals, 9, 88(2019).

    [37] Capper P, Rudolph P[M]. Crystal growth technology: semiconductors and dielectrics(2010).

    [38] Powsner R A, Palmer M R, Powsner E R[M]. Essentials of nuclear medicine physics and instrumentation(2013).

    [39] Dujardin C, Auffray E, Bourret-Courchesne E et al. Needs, trends, and advances in inorganic scintillators[J]. IEEE Transactions on Nuclear Science, 65, 1977-1997(2018).

    [40] Rodnyi P A, Dorenbos P, van Eijk C W E. Energy loss in inorganic scintillators[J]. Physica Status Solidi (b), 187, 15-29(1995).

    [41] Dorenbos P. Scintillation mechanisms in Ce3+ doped halide scintillators[J]. Physica Status Solidi (a), 202, 195-200(2005).

    [42] Zhou Y, Chen J, Bakr O M et al. Metal halide perovskites for X-ray imaging scintillators and detectors[J]. ACS Energy Letters, 6, 739-768(2021).

    [43] Lempicki A, Wojtowicz A J, Berman E. Fundamental limits of scintillator performance[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 333, 304-311(1993).

    [44] ter Weele D N, Schaart D R, Dorenbos P. The effect of self-absorption on the scintillation properties of Ce3+ activated LaBr3 and CeBr3[J]. IEEE Transactions on Nuclear Science, 61, 683-688(2014).

    [45] Deych R, Dolazza E. New trends in X-ray CT imaging[M]. Tavernier S, Gektin A, Grinyov B, et al. Radiation detectors for medical applications. NATO security through science series, 15-35(2006).

    [46] Büchele P, Richter M, Tedde S F et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors[J]. Nature Photonics, 9, 843-848(2015).

    [47] Samei E, Flynn M J, Reimann D A. A method for measuring the presampled MTF of digital radiographic systems using an edge test device[J]. Medical Physics, 25, 102-113(1998).

    [48] Kabir M Z, Kasap S O. Modulation transfer function of photoconductive X-ray image detectors: effects of charge carrier trapping[J]. Journal of Physics D: Applied Physics, 36, 2352-2358(2003).

    [49] Hunter D M, Belev G, Kasap S et al. Measured and calculated K-fluorescence effects on the MTF of an amorphous-selenium based CCD X-ray detector[J]. Medical Physics, 39, 608-622(2012).

    [50] Kozorezov A G, Wigmore J K, Owens A et al. The effect of carrier diffusion on the characteristics of semiconductor imaging arrays[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 531, 52-55(2004).

    [51] Ma W B, Su Y R, Zhang Q S et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging[J]. Nature Materials, 21, 210-216(2022).

    [52] van Heerden P J[M]. The crystalcounter(1945).

    [53] McKay K G. A germanium counter[J]. Physical Review, 76, 1537(1949).

    [54] Guerra M, Manso M, Longelin S et al. Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications[J]. Journal of Instrumentation, 7, C10004(2012).

    [55] Owens A, Peacock A. Compound semiconductor radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 531, 18-37(2004).

    [56] Luke P N, Rossington C S, Wesela M F. Low energy X-ray response of Ge detectors with amorphous Ge entrance contacts[J]. IEEE Transactions on Nuclear Science, 41, 1074-1079(1994).

    [57] Szeles C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications[J]. Physica Status Solidi (b), 241, 783-790(2004).

    [58] del Sordo S, Abbene L, Caroli E et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications[J]. Sensors, 9, 3491-3526(2009).

    [59] Schieber M, Hermon H, Zuck A et al. Thick films of X-ray polycrystalline mercuric iodide detectors[J]. Journal of Crystal Growth, 225, 118-123(2001).

    [60] Street R A, Ready S E, van Schuylenbergh K et al. Comparison of PbI2 and HgI2 for direct detection active matrix X-ray image sensors[J]. Journal of Applied Physics, 91, 3345-3355(2002).

    [61] Zentai G, Schieber M, Partain L et al. Large area mercuric iodide and lead iodide X-ray detectors for medical and non-destructive industrial imaging[J]. Journal of Crystal Growth, 275, e1327-e1331(2005).

    [62] Yun M S, Cho S H, Lee R N et al. Investigation of PbI2 film fabricated by a new sedimentation method as an X-ray conversion material[J]. Japanese Journal of Applied Physics, 49, 041801(2010).

    [63] Shah K S, Street R A, Dmitriyev Y et al. X-ray imaging with PbI2-based A-Si∶H flat panel detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 458, 140-147(2001).

    [64] Destefano N, Mulato M. Influence of multi-depositions on the final properties of thermally evaporated TlBr films[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 624, 114-117(2010).

    [65] Hitomi K, Kikuchi Y, Shoji T et al. Improvement of energy resolutions in TlBr detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 607, 112-115(2009).

    [66] Brenner T M, Egger D A, Kronik L et al. Hybrid organic: inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties[J]. Nature Reviews Materials, 1, 15007(2016).

    [67] de Arquer F P G, Armin A, Meredith P et al. Solution-processed semiconductors for next-generation photodetectors[J]. Nature Reviews Materials, 2, 16100(2017).

    [68] Kasap S. Low-cost X-ray detectors[J]. Nature Photonics, 9, 420-421(2015).

    [69] Niu G D, Guo X D, Wang L D. Review of recent progress in chemical stability of perovskite solar cells[J]. Journal of Materials Chemistry A, 3, 8970-8980(2015).

    [70] Lang F, Nickel N H, Bundesmann J et al. Radiation hardness and self-healing of perovskite solar cells[J]. Advanced Materials, 28, 8726-8731(2016).

    [71] Yang S, Xu Z Y, Xue S et al. Organohalide lead perovskites: more stable than glass under gamma-ray radiation[J]. Advanced Materials, 31, e1805547(2019).

    [72] Huang J S, Yuan Y B, Shao Y C et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications[J]. Nature Reviews Materials, 2, 17042(2017).

    [73] Lang F, Shargaieva O, Brus V V et al. Influence of radiation on the properties and the stability of hybrid perovskites[J]. Advanced Materials, 30, 1702905(2018).

    [74] Dong Q F, Fang Y J, Shao Y C et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 347, 967-970(2015).

    [75] Wang X, Zhao D W, Qiu Y P et al. PIN diodes array made of perovskite single crystal for X-ray imaging[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 12, 1800380(2018).

    [76] Ye F, Lin H, Wu H D et al. High-quality cuboid CH3NH3PbI3 single crystals for high performance X-ray and photon detectors[J]. Advanced Functional Materials, 29, 1806984(2019).

    [77] Huang Y M, Qiao L, Jiang Y Z et al. A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector[J]. Angewandte Chemie, 58, 17834-17842(2019).

    [78] Eperon G E, Paterno G M, Sutton R J et al. Inorganic caesium lead iodide perovskite solar cells[J]. Journal of Materials Chemistry A, 3, 19688-19695(2015).

    [79] Li J C, Du X Y, Niu G D et al. Rubidium doping to enhance carrier transport in CsPbBr3 single crystals for high-performance X-ray detection[J]. ACS Applied Materials & Interfaces, 12, 989-996(2020).

    [80] Zhang B B, Liu X, Xiao B et al. High-performance X-ray detection based on one-dimensional inorganic halide perovskite CsPbI3[J]. The Journal of Physical Chemistry Letters, 11, 432-437(2020).

    [81] Liu J Y, Shabbir B, Wang C J et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots[J]. Advanced Materials, 31, e1901644(2019).

    [82] Wu C C, Zhang Q H, Liu G H et al. From Pb to Bi: a promising family of Pb-free optoelectronic materials and devices[J]. Advanced Energy Materials, 10, 1902496(2020).

    [83] Yang B, Pan W C, Wu H D et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging[J]. Nature Communications, 10, 1989(2019).

    [84] Steele J A, Pan W C, Martin C et al. Photophysical pathways in highly sensitive Cs2AgBiBr6 double-perovskite single-crystal X-ray detectors[J]. Advanced Materials, 30, 1804450(2018).

    [85] Yin L X, Wu H D, Pan W C et al. Controlled cooling for synthesis of Cs2AgBiBr6 single crystals and its application for X-ray detection[J]. Advanced Optical Materials, 7, 1900491(2019).

    [86] Yuan W N, Niu G D, Xian Y M et al. In situ regulating the order-disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector[J]. Advanced Functional Materials, 29, 1900234(2019).

    [87] Xia M L, Yuan J H, Niu G D et al. Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-ray detectors with low detection limit and high stability[J]. Advanced Functional Materials, 30, 1910648(2020).

    [88] Yao L, Niu G D, Yin L X et al. Bismuth halide perovskite derivatives for direct X-ray detection[J]. Journal of Materials Chemistry C, 8, 1239-1243(2020).

    [89] Liu Y C, Xu Z, Yang Z et al. Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging[J]. Matter, 3, 180-196(2020).

    [90] Li W, Xin D Y, Tie S J et al. Zero-dimensional lead-free FA3Bi2I9 single crystals for high-performance X-ray detection[J]. The Journal of Physical Chemistry Letters, 12, 1778-1785(2021).

    [91] Zhang Y X, Liu Y C, Xu Z et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection[J]. Nature Communications, 11, 2304(2020).

    [92] Li X, Zhang P, Hua Y Q et al. Ultralow detection limit and robust hard X-ray imaging detector based on inch-sized lead-free perovskite Cs3Bi2Br9 single crystals[J]. ACS Applied Materials & Interfaces, 14, 9340-9351(2022).

    [93] Shrestha S, Fischer R, Matt G J et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers[J]. Nature Photonics, 11, 436-440(2017).

    [94] Pan W C, Yang B, Niu G D et al. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection[J]. Advanced Materials, 31, 1904405(2019).

    [95] Zhao J J, Zhao L, Deng Y H et al. Perovskite-filled membranes for flexible and large-area direct-conversion X-ray detector arrays[J]. Nature Photonics, 14, 612-617(2020).

    [96] Tian Y, Cao W H, Luo X X et al. Preparation and luminescence property of Gd2O2S∶Tb X-ray nano-phosphors using the complex precipitation method[J]. Journal of Alloys and Compounds, 433, 313-317(2007).

    [97] Yang P, Harmon C D, Doty F P et al. Effect of humidity on scintillation performance in Na and Tl activated CsI crystals[J]. IEEE Transactions on Nuclear Science, 61, 1024-1031(2014).

    [98] Blahuta S, Bessière A, Viana B et al. Evidence and consequences of Ce4+ in LYSO∶Ce, Ca and LYSO∶Ce, Mg single crystals for medical imaging applications[J]. IEEE Transactions on Nuclear Science, 60, 3134-3141(2013).

    [99] Xu J, Shi Y, Xie J J et al. Fabrication, microstructure, and luminescent properties of Ce3+-doped Lu3Al5O12 (Ce∶LuAG) transparent ceramics by low-temperature vacuum sintering[J]. Journal of the American Ceramic Society, 96, 1930-1936(2013).

    [100] Cherepy N J, Hull G, Drobshoff A D et al. Strontium and Barium iodide high light yield scintillators[J]. Applied Physics Letters, 92, 083508(2008).

    [101] Birowosuto M D, Cortecchia D, Drozdowski W et al. X-ray scintillation in lead halide perovskite crystals[J]. Scientific Reports, 6, 37254(2016).

    [102] Kobayashi M, Omata K, Sugimoto S et al. Scintillation characteristics of CsPbCl3 single crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 592, 369-373(2008).

    [103] Mykhaylyk V B, Kraus H, Kapustianyk V et al. Bright and fast scintillations of an inorganic halide perovskite CsPbBr3 crystal at cryogenic temperatures[J]. Scientific Reports, 10, 8601(2020).

    [104] Xie A Z, Nguyen T H, Hettiarachchi C et al. Thermal quenching and dose studies of X-ray luminescence in single crystals of halide perovskites[J]. The Journal of Physical Chemistry C, 122, 16265-16273(2018).

    [105] Shibuya K, Koshimizu M, Takeoka Y et al. Scintillation properties of (C6H13NH3)2PbI4: exciton luminescence of an organic/inorganic multiple quantum well structure compound induced by 2.0 MeV protons[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 194, 207-212(2002).

    [106] Shibuya K, Koshimizu M, Asai K et al. Quantum confinement for large light output from pure semiconducting scintillators[J]. Applied Physics Letters, 84, 4370-4372(2004).

    [107] Shibuya K, Koshimizu M, Murakami H et al. Development of ultra-fast semiconducting scintillators using quantum confinement effect[J]. Japanese Journal of Applied Physics, 43, L1333-L1336(2004).

    [108] van Eijk C W E, de Haas J T M, Rodnyi P A et al. Scintillation properties of a crystal of (C6H5(CH2)2NH3)2PbBr4[C], 3525-3528(2008).

    [109] Kishimoto S, Shibuya K, Nishikido F et al. Subnanosecond time-resolved X-ray measurements using an organic-inorganic perovskite scintillator[J]. Applied Physics Letters, 93, 261901(2008).

    [110] Kawano N, Koshimizu M, Okada G et al. Scintillating organic-inorganic layered perovskite-type compounds and the gamma-ray detection capabilities[J]. Scientific Reports, 7, 14754(2017).

    [111] Xie A Z, Maddalena F, Witkowski M E et al. Library of two-dimensional hybrid lead halide perovskite scintillator crystals[J]. Chemistry of Materials, 32, 8530-8539(2020).

    [112] Li Y, Chen L, Liu B et al. Scintillation performance of two-dimensional perovskite (BA)2PbBr4 microcrystals[J]. Journal of Materials Chemistry C, 9, 17124-17128(2021).

    [113] Horimoto A, Kawano N, Nakauchi D et al. Scintillation properties of organic-inorganic perovskite-type compounds with fluorophenethylamine[J]. Optical Materials, 101, 109686(2020).

    [114] Kawano N, Nakauchi D, Akatsuka M et al. Photoluminescence and scintillation characteristics of organic-inorganic layered perovskite-type compounds with a methoxyphenethylamine[J]. Journal of Luminescence, 241, 118467(2022).

    [115] Kawano N, Nakauchi D, Kimura H et al. Photoluminescence and scintillation properties of (C6H5C2H4NH3)2Pb1-xMnxBr4[J]. Japanese Journal of Applied Physics, 58, 082004(2019).

    [116] Nakauchi D, Kawano N, Kawaguchi N et al. Luminescence and scintillation properties of (C6H5(CH2)2NH3)2(Ba, Pb)Br4 with self-organized bi-dimensional quantum-well structures[J]. Japanese Journal of Applied Physics, 59, SCCB04(2020).

    [117] Akatsuka M, Kawano N, Kato T et al. Development of scintillating 2D quantum confinement materials: (C6H5C2H4NH3)2Pb1-x[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 954, 161372(2020).

    [118] Xie A Z, Hettiarachchi C, Maddalena F et al. Lithium-doped two-dimensional perovskite scintillator for wide-range radiation detection[J]. Communications Materials, 1, 37(2020).

    [119] Maddalena F, Xie A Z, Arramel et al. Effect of commensurate lithium doping on the scintillation of two-dimensional perovskite crystals[J]. Journal of Materials Chemistry C, 9, 2504-2512(2021).

    [120] Diguna L J, Kaffah S, Mahyuddin M H et al. Scintillation in (C6H5CH2NH3)2SnBr4: green-emitting lead-free perovskite halide materials[J]. RSC Advances, 11, 20635-20640(2021).

    [121] Cao J T, Guo Z, Zhu S et al. Preparation of lead-free two-dimensional-layered (C8H17NH3)2SnBr4 perovskite scintillators and their application in X-ray imaging[J]. ACS Applied Materials & Interfaces, 12, 19797-19804(2020).

    [122] Protesescu L, Yakunin S, Bodnarchuk M I et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 15, 3692-3696(2015).

    [123] Heo J H, Shin D H, Park J K et al. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging[J]. Advanced Materials, 30, 1801743(2018).

    [124] Zhang Y H, Sun R J, Ou X Y et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens[J]. ACS Nano, 13, 2520-2525(2019).

    [125] Wang C Y, Lin H, Zhang Z J et al. X-ray excited CsPb(Cl, Br)3 perovskite quantum dots-glass composite with long-lifetime[J]. Journal of the European Ceramic Society, 40, 2234-2238(2020).

    [126] Ma W B, Jiang T M, Yang Z et al. Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering[J]. Advanced Science, 8, 2003728(2021).

    [127] Xu Y S, Zhao X D, Xia M L et al. Perovskite nanocrystal doped all-inorganic glass for X-ray scintillators[J]. Journal of Materials Chemistry C, 9, 5452-5459(2021).

    [128] Zhang H, Yang Z, Zhou M et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure[J]. Advanced Materials, 33, 2102529(2021).

    [129] Cho S, Kim S, Kim J et al. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators[J]. Light: Science & Applications, 9, 156(2020).

    [130] Wu X C, Guo Z, Zhu S et al. Ultrathin, transparent, and high density perovskite scintillator film for high resolution X-ray microscopic imaging[J]. Advanced Science, 9, 2200831(2022).

    [131] Williams R T, Wolszczak W W, Yan X H et al. Perovskite quantum-dot-in-host for detection of ionizing radiation[J]. ACS Nano, 14, 5161-5169(2020).

    [132] Li X M, Meng C F, Huang B et al. All-perovskite integrated X-ray detector with ultrahigh sensitivity[J]. Advanced Optical Materials, 8, 2000273(2020).

    [133] Gandini M, Villa I, Beretta M et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators[J]. Nature Nanotechnology, 15, 462-468(2020).

    [134] Wang Z F, Sun R J, Liu N Q et al. X-Ray imager of 26-µm resolution achieved by perovskite assembly[J]. Nano Research, 15, 2399-2404(2022).

    [135] Hu Q S, Deng Z Z, Hu M C et al. X-ray scintillation in lead-free double perovskite crystals[J]. Science China Chemistry, 61, 1581-1586(2018).

    [136] Zeng Z C, Huang B L, Wang X et al. Multimodal luminescent Yb3+/Er3+/Bi3+-doped perovskite single crystals for X-ray detection and anti-counterfeiting[J]. Advanced Materials, 32, 2004506(2020).

    [137] Wang Z L, Xu X M, Wang S H et al. Cerium doping double perovskite scintillator for sensitive X-ray detection and imaging[J]. Chemistry, 27, 9071-9076(2021).

    [138] Yang B, Yin L X, Niu G D et al. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator[J]. Advanced Materials, 31, 1904711(2019).

    [139] Lian L Y, Zheng M Y, Zhang W Z et al. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons[J]. Advanced Science, 7, 2000195(2020).

    Tools

    Get Citation

    Copy Citation Text

    Wenbo Ma, Cuifang Kuang, Xu Liu, Yang Yang. Research Progress of X-Ray Detection and Imaging Based on Emerging Metal Halide Semiconductors and Scintillators[J]. Acta Optica Sinica, 2022, 42(17): 1704002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Detectors

    Received: Jun. 29, 2022

    Accepted: Jul. 28, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Yang Yang (yangyang15@zju.edu.cn)

    DOI:10.3788/AOS202242.1704002

    Topics