Optical Communication Technology, Volume. 44, Issue 10, 42(2020)

High power supercontinuum with fiber generation technology

JIA Caiping1...2 and WANG Chuncan12,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(26)

    [1] [1] WANG C, KIM J, JIN C T, et al. Near infrared spectroscopy in optical coherence tomography[J]. Journal of Near Infrared Spectroscopy, 2012, 20(1): 237-247.

    [2] [2] LEVICK A P, GREENWELL C L, IRELAND J, et al. Spectral radiance source based on supercontinuum laser and wavelength tunable bandpass filter: the spectrally tunable absolute irradiance and radiance source[J]. Applied optics, 2014, 53(16): 3508-3519.

    [3] [3] TU H, BOPPART S A. Coherent fiber supercontinuum for biophotonics[J]. Laser & photonics reviews, 2013, 7(5): 628-645.

    [4] [4] SONG R, HOU J, WANG Y B, et al. Analysis of the scalability of single-mode near-infrared supercontinuum to high average power[J]. Journal of Optics, 2013. DOI: 10.1088/2040-8978/15/3/035203.

    [6] [6] CHEN H, CHEN S P, JIANG Z F, et al. Enhanced supercontinuum generation in nonlinear Ytterbium-doped fiber amplifier by seeding at short wavelength[J]. IEEE Journal of Quantum Electronics, 2015, 51(11): 1-7.

    [7] [7] LAU K Y, SUHAILIN F H, ABIDIN N H Z, et al. Continuous-Wave Pumping Supercontinuum Generation in Random Distributed Feedback Laser Cavity[J]. IEEE Photonics Journal, 2019, 11(4): 1-7.

    [8] [8] TRAVERS J C, RULKOV A B, CUMBERLAND B A, et al. Visible supercontinuum generation in photonic crystal fibers with a 400W continuous wave fiber laser[J]. Optics Express, 2008, 16(19): 14435-14447.

    [9] [9] GUO C, RUAN S, YAN P, et al. Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser[J]. Optics Express, 2010, 18(11): 11046-11051.

    [10] [10] LARSEN C, NOORDEGRAAF D, SKOVGAARD P M W, et al. Gain-switched CW fiber laser for improved supercontinuum generation in a PCF[J]. Optics Express, 2011, 19(16): 14883-14891.

    [11] [11] LARSEN C, SRENSEN S T, NOORDEGRAAF D, et al. Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation[J]. Optics Communications, 2013, 290: 170-174.

    [12] [12] JIN A, ZHOU H, ZHOU X, et al. High-power ultraflat near-infrared supercontinuum generation pumped by a continuous amplified spontaneous emission source[J]. IEEE Photonics Journal, 2015, 7(2): 1-9.

    [13] [13] CHEN H, CHEN S, WANG J, et al. 35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser[J]. Optics communications, 2011, 284(23): 5484-5487.

    [14] [14] LIU K, LIU J, SHI H, et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power[J]. Optics express, 2014, 22(20): 24384-24391.

    [16] [16] YANG L, LI Y, ZHANG B, et al. 30-W supercontinuum generation based on ZBLAN fiber in an all-fiber configuration[J]. Photonics Research, 2019, 7(9): 1061-1065.

    [17] [17] SU N, LI P X, XIAO K, et al. Supercontinuum generation in seven-core photonic crystal fiber pumped by a broadband picosecond pulsed fiber amplifier[J]. Chinese Physics B, 2017(7):138-143.

    [18] [18] WAN N, CAI J H, QI X, et al. Ultraviolet-enhanced supercontinuum generation with a mode-locked Yb-doped fiber laser operating in dissipative-soliton-resonance region[J]. Optics express, 2018, 26(2): 1689-1696.

    [19] [19] PIOGER P H, COUDERC V, LEPROUX P, et al. High spectral power density supercontinuum generation in a nonlinear fiber amplifier[J]. Optics express, 2007, 15(18): 11358-11363.

    [20] [20] LIN J H, LEE Y W, LIN T C, et al. Near-infrared supercontinnum generation in single-mode nonlinear Yb3+-doped fiber amplifier[J]. Optics express, 2014, 22(13): 16130-16138.

    [21] [21] AGHAYARI E, GHALEH K J. High-power supercontinuum generation by noise-like pulse amplification in Yb-doped fiber amplifier operating in a nonlinear regime[J]. Applied optics, 2019, 58(15): 4020-4024.

    [22] [22] BASELT T, TAUDT C, NELSEN B, et al. Experimental study of supercontinuum generation in an amplifier based on an Yb3+ doped nonlinear photonic crystal fiber[C]//Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV. International Society for Optics and Photonics 2016, February 13-18, 2016, San Francisco, USA. California: SPIE LASE, 2016: 97310L-1-97310L-7.

    [23] [23] KWON Y, PARK K, HONG S, et al. Numerical study on the supercontinuum generation in an active highly nonlinear photonic crystal fiber with flattened all-normal dispersion[J]. IEEE Journal of Quantum Electronics, 2017, 53(5): 1-8.

    [24] [24] AN Y, YU Y, CAO J, et al. Power scalability of a single-stage Yb-doped superfluorescent fiber source[J]. Laser Physics Letters, 2016, 13(2): 025105-1-025105-7.

    [25] [25] VAZQUEZ-ZUNIGA L A, FENG X, KWON Y, et al. W-type highly erbium-doped active soft-glass fibre with high nonlinearity[J]. Electronics Letters, 2016, 52(12): 1047-1048.

    [26] [26] YANG L, ZHANG B, WU T, et al. Watt-level mid-infrared supercontinuum generation from 2.7 to 4.25 μm in an erbium-doped ZBLAN fiber with high slope efficiency[J]. Optics letters, 2018, 43(13): 3061-3064.

    [27] [27] YANG L, ZHANG B, YIN K, et al. Towards a supercontinuum generation in an all-fiberized holmium-doped ZBLAN fiber amplifier[J]. Journal of Lightwave Technology, 2018, 36(16): 3193-3197.

    [28] [28] ROMANO C, JAOUN Y, TENCH R E, et al. Ultra-flat supercontinuum from 1.95 to 2.65 in a nanosecond pulsed Thulium-doped fiber laser[J]. Optical Fiber Technology, 2020, 54: 102113-1-102113-5.

    Tools

    Get Citation

    Copy Citation Text

    JIA Caiping, WANG Chuncan. High power supercontinuum with fiber generation technology[J]. Optical Communication Technology, 2020, 44(10): 42

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 6, 2020

    Accepted: --

    Published Online: Apr. 17, 2021

    The Author Email: Chuncan WANG (chcwang@bjtu.edu.cn)

    DOI:10.13921/j.cnki.issn1002-5561.2020.10.011

    Topics