Journal of Semiconductors, Volume. 44, Issue 7, 072806(2023)

Surface plasmon assisted high-performance photodetectors based on hybrid TiO2@GaOxNy-Ag heterostructure

Jiajia Tao1、†, Guang Zeng1、†, Xiaoxi Li1, Yang Gu1, Wenjun Liu1、*, David Wei Zhang1,2, and Hongliang Lu1,2、**
Author Affiliations
  • 1State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
  • 2Jiashan Fudan Institute, Jiaxing 314100, China
  • show less
    Figures & Tables(7)
    (Color online) (a) TiO2@GaOxNy-Ag heterojunction preparation process. SEM image of (b) FTO, (c) TiO2, (d) TiO2@GaOxNy and (e) TiO2@GaOxNy-Ag. (f) The TEM image of TiO2@GaOxNy-Ag. (g) corresponds to the HRTEM image of TiO2 in Fig. 1(f). (h) corresponds to the GaN and GaOxNy in the ʻeʼ, ʻfʼ, and ʻgʼ regions in Fig. 1(f). (i) corresponds to the HRTEM image of the Ag nanoparticle.
    (Color online) (a) XPS survey spectrum. High-resolution spectra of (b) Ga 3d, (c) O 1s, (d) N 1s and (e) Ag 3d. (f) The O 1s peak and inelastic scattering loss for TiO2@GaOxNy-Ag heterojunction.
    (Color online) (a) The schematic of the structure of the TiO2@GaOxNy-Ag photodetector. (b) The optical image of the fabricated photodetector. (c) Photocurrent change relationship of TiO2, TiO2@GaOxNy, and TiO2@GaOxNy-Ag devices at various wavelengths; the bias voltage is 1 V, the optical power density is 5.0 mW/cm2. (d) TiO2@GaOxNy-Ag photocurrent change graph at 380, 480, and 580 nm wavelengths, bias voltage of -1 V to 1 V, optical power density of 5.0 mW/cm2. (e) The current-time relationship diagram of the switch state under the aforementioned test conditions. (f)–(h) Light response time test diagrams at various wavelengths under the aforementioned test conditions. (i) Comparison of TiO2@GaOxNy-Ag photodetector’s performance in comparison to the reported TiO2 and Ga2O3 heterojunction-based photodetector in the literature.
    (Color online) (a) UV-Vis absorption spectrum. (b) The relationship between (αhν)2 and (hν). (c) Projected electronic density of states for the TiO2@GaOxNy structure with the Fermi energy set to 0 eV.
    (Color online) (a) Schematic illustration of the FDTD simulation setup used for the extinction power calculation and local electric field distribution of the TiO2@GaOxNy-Ag heterojunction. (b) Calculated extinction power for the pure TiO2, TiO2@GaOxNy, and TiO2@GaOxNy-Ag. The electric field distributions corresponding to the FDTD simulation of the TiO2@GaOxNy-Ag heterojunction under different wavelengths of illumination (c) 380 nm; (d) 480 nm; (e) 580 nm.
    (Color online) (a) Schematic band diagram of TiO2@GaOxNy-Ag demonstrating the behaviour of charge transport. (b) The energy band diagram illustrating the transport properties of the TiO2@GaOxNy-Ag heterojunction.
    • Table 1. Performance comparison of photodetectors based on TiO2 and Ga2O3 heterojunctions.

      View table
      View in Article

      Table 1. Performance comparison of photodetectors based on TiO2 and Ga2O3 heterojunctions.

      Device structureLight source (nm)Bias (V)D* (Jones)Rλ (A/W)τr/τd (s)Refs
      Ga2O3/ZnO340101.5×10−48.99/4.6839
      BiOCl-TiO235052.70×10131.1922.3/0.8540
      TiO2/CuZnS32000.00210.2/0.241
      TiO2/P3HT40001.61×10100.000311.1/0.542
      ZnO/TiO236516.10×1090.233.7/1237
      Au/WO3/TiO278510.0955.5×10−5/1.1×10−443
      Te/TiO23500.50.12544
      Ag/Ag NPs/TiO2 NTs/Ti36515.18×10101.370.43/0.4745
      Ga2O342041.50.4/0.4646
      TiO2@GaOxNy−Ag38014.79×1090.940.19/0.23This work
      TiO2@GaOxNy−Ag48015.25×1091.520.21/0.48This work
      TiO2@GaOxNy−Ag58017.96×10102.860.50/0.57This work
    Tools

    Get Citation

    Copy Citation Text

    Jiajia Tao, Guang Zeng, Xiaoxi Li, Yang Gu, Wenjun Liu, David Wei Zhang, Hongliang Lu. Surface plasmon assisted high-performance photodetectors based on hybrid TiO2@GaOxNy-Ag heterostructure[J]. Journal of Semiconductors, 2023, 44(7): 072806

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Articles

    Received: Dec. 28, 2022

    Accepted: --

    Published Online: Aug. 7, 2023

    The Author Email: Liu Wenjun (wjliu@fudan.edu.cn), Lu Hongliang (honglianglu@fudan.edu.cn)

    DOI:10.1088/1674-4926/44/7/072806

    Topics