Journal of the Chinese Ceramic Society, Volume. 50, Issue 2, 321(2022)

Research Progress on Lithium/Sodium-Rich Anti-Perovskite Solid-State Electrolytes and Its Application

DENG Zhi1... LI Shuai1, HAN Jiantao2 and ZHAO Yusheng1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(33)

    [1] [1] MANTHIRAM A, YU X W, WANG S F. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2(4): 16103.

    [2] [2] MAUGER A, ARMAND M, JULIEN C M, et al. Challenges and issues facing lithium metal for solid-state rechargeable batteries[J]. J Power Sources, 2017, 353: 333-342.

    [3] [3] ZHANG Z Z, SHAO Y J, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy Environ Sci, 2018, 11(8): 1945-1976.

    [4] [4] REDDY M V, JULIEN C M, MAUGER A, et al. Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: A Review[J]. Nanomaterials, 2020, 10(8): 1606.

    [5] [5] LI X N, LIANG J W, YANG X F, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy Environ Sci, 2020, 13(5): 1429-1461.

    [6] [6] ZHAO Y, DAEMEN L L. Superionic conductivity in lithium-rich anti-perovskites[J]. J Am Chem Soc, 2012, 134(36): 15042-15047.

    [7] [7] KIM K J, BALAISH M, WADAGUCHI M, et al. Solid-state Li-metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces[J]. Adv Energy Mater, 2021, 11(1): 2002689.

    [9] [9] LI S, ZHU J, WANG Y, et al. Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X=Cl, Br)[J]. Solid State Ionics, 2016, 284: 14-19.

    [10] [10] LU X, WU G, HOWARD J W, et al. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity[J]. Chem Commun (Camb), 2014, 50(78): 11520-11522.

    [11] [11] LU X, HOWARD J W, CHEN A, et al. Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries[J]. Adv Sci (Weinh), 2016, 3(3): 1500359.

    [12] [12] KOEDTRUAD A, PATINO M A, ICHIKAWA N, et al. Crystal structures and ionic conductivity in Li2OHX (X=Cl, Br) antiperovskites[J]. J Solid State Chem, 2020, 286: 121263.

    [13] [13] DENG Z, OU M, WAN J, et al. Local structural changes and inductive effects on ion conduction in antiperovskite solid electrolytes[J]. Chem Mater, 2020, 32(20): 8827-8835.

    [14] [14] LI Y, ZHOU W, XIN S, et al. Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries[J]. Angew Chem Int Ed Eng, 2016, 55(34): 9965-9968.

    [15] [15] WANG Y, WANG Q, LIU Z, et al. Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites[J]. J Power Sources, 2015, 293: 735-740.

    [16] [16] SUN Y, WANG Y, LIANG X, et al. Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4[J]. J Am Chem Soc, 2019, 141(14): 5640-5644.

    [17] [17] GAO L, ZHANG H, WANG Y, et al. Mechanism of enhanced ionic conductivity by rotational nitrite group in antiperovskite Na3ONO2[J]. J Mater Chem A, 2020, 8(40): 21265-21272.

    [18] [18] MUTSCHKE A, BERNARD G M, BERTMER M, et al. Na3SO4H-the first representative of the material class of sulfate hydrides[J]. Angew Chemie-Int Ed, 2021, 60(11): 5683-5687.

    [19] [19] GAO S, BROUX T, FUJII S, et al. Hydride-based antiperovskites with soft anionic sublattices as fast alkali ionic conductors[J]. Nat Commun, 2021, 12(1): 201.

    [20] [20] FAN S, LEI M, WU H, et al. A Na-rich fluorinated sulfate anti-perovskite with dual doping as solid electrolyte for Na metal solid state batteries[J]. Energy Storage Mater, 2020, 31: 87-94.

    [21] [21] SONG A-Y, XIAO Y, TURCHENIUK K, et al. Protons enhance conductivities in lithium halide hydroxide/lithium oxyhalide solid electrolytes by forming rotating hydroxy groups[J]. Adv Energy Mater, 2018, 8(3): 1700971.

    [22] [22] SONG A Y, TURCHENIUK K, LEISEN J, et al. Understanding Li-ion dynamics in lithium hydroxychloride (Li2OHCl) solid state electrolyte via addressing the role of protons[J]. Adv Energy Mater, 2020, 10(8): 1903480.

    [23] [23] DENG Z, RADHAKRISHNAN B, ONG S P. Rational composition pptimization of the lithium-rich Li3OCl1-xBrx anti-perovskite superionic conductors[J]. Chem Mater, 2015, 27(10): 3749-3755.

    [24] [24] ZHANG Y, ZHAO Y, CHEN C. Ab initio study of the stabilities of and mechanism of superionic transport in lithium-rich antiperovskites[J]. Phys Rev B, 2013, 87(13): 134303.

    [25] [25] EMLY A, KIOUPAKIS E, VAN DER VEN A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors[J]. Chem Mater, 2013, 25(23): 4663-4670.

    [26] [26] HANGHOFER I, REDHAMMER G J, ROHDE S, et al. Untangling the structure and dynamics of lithium-rich anti-perovskites envisaged as solid electrolytes for batteries[J]. Chem Mater, 2018, 30(22): 8134-8144.

    [27] [27] HOOD Z D, WANG H, SAMUTHIRA PANDIAN A, et al. Li2OHCl crystalline electrolyte for stable metallic lithium anodes[J]. J Am Chem Soc, 2016, 138(6): 1768-1771.

    [28] [28] YAN C, XU R, QIN J L, et al. 4.5 V High-voltage rechargeable batteries enabled by the reduction of polarization on the lithium metal anode[J]. Angew Chem-Int Ed, 2019, 58(43): 15235-15238.

    [29] [29] HAN B, FENG D Y, LI S, et al. Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries[J]. Nano Lett, 2020, 20(5): 4029-4037.

    [30] [30] YE Y, DENG Z, GAO L, et al. Lithium-rich anti-perovskite Li2OHBr-based polymer electrolytes enabling an improved interfacial stability with a three-dimensional-structured lithium metal anode in all-solid-state batteries[J]. ACS App Mater Interfaces, 2021, 13(24): 28108-28117.

    [31] [31] GAO L, ZHAO R, HAN S, et al. Antiperovskite ionic conductor layer for stabilizing the interface of NASICON solid electrolyte against Li metal in all-solid-state batteries[J]. Batteries Supercaps, 2021, 4(9): 1491-1498.

    [32] [32] XIAO Y, TURCHENIUK K, NARLA A, et al. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries[J]. Nat Mater, 2021, 20: 984-990.

    [33] [33] GUO L, XIN C, GAO J, et al. The electrolysis of anti-perovskite Li2OHCl for prelithiation of high-energy-density batteries[J]. Angew Chem Int Ed Eng, 2021, 60(23): 13013-13020.

    [34] [34] LAI K T, ANTONYSHYN I, PROTS Y, et al. Anti-perovskite Li-battery cathode materials[J]. J Am Chem Soc, 2017, 139(28): 9645-9649

    Tools

    Get Citation

    Copy Citation Text

    DENG Zhi, LI Shuai, HAN Jiantao, ZHAO Yusheng. Research Progress on Lithium/Sodium-Rich Anti-Perovskite Solid-State Electrolytes and Its Application[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 321

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Aug. 30, 2021

    Accepted: --

    Published Online: Nov. 23, 2022

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics