Microelectronics, Volume. 52, Issue 6, 1027(2022)
Prediction of Detailed Routing Check Violations Using Deep Learning
[1] [1] ALPERT C J, LI Z, MOFFITT M D, et al. What makes a design difficult to route [C]// ACM ISPD. San Francisco, CA, USA. 2010: 7-12.
[2] [2] SHOJAEI H, DAVOODI A, LINDEROTH J T. Congestion analysis for global routing via integer programming [C]// IEEE/ACM ICCAD. San Jose, CA, USA. 2011: 256-262.
[3] [3] WEI Y, SZE C, VISWANATHAN N, et al. GLARE: global and local wiring aware routability evaluation [C]// IEEE/ACM DAC. New York, NY, USA. 2012: 768-773.
[4] [4] MIRHOSEINI A, GOLDIE A, YAZGAN M, et al. A graph placement methodology for fast chip design [J]. Nature, 2021, 594(7862): 207-212.
[5] [5] YU B, PAN D Z, MATSUNAWA T, et al. Machine learning and pattern matching in physical design [C]// IEEE ASP-DAC. Chiba, Japan. 2015: 286-293.
[6] [6] ZHOU Q, WANG X, QI Z, et al. An accurate detailed routing routability prediction model in placement [C]// IEEE ASQED. Kula Lumpur, Malaysia. 2015: 119-122.
[7] [7] QI Z, CAI Y, ZHOU Q. Accurate prediction of detailed routing congestion using supervised data learning [C]// IEEE ICCD. Seoul, Korea. 2014: 97-103.
[8] [8] ZENG W, DAVOODI A, TOPALOGLU R O. Explainable DRC hotspot prediction with random forest and SHAP tree explainer [C]// IEEE DATE. Grenoble, French. 2020: 1151-1156.
[9] [9] CHAN W T J, HO P H, KAHNG A B, et al. Routability optimization for industrial designs at sub-14 nm process nodes using machine learning [C]// ACM ISPD. Portland, OR, USA. 2017: 15-21.
[10] [10] TABRIZI A F, RAKAI L, DARAV N K, et al. A machine learning framework to identify detailed routing short violations from a placed netlist [C]// IEEE/ACM DAC. San Francisco, CA, USA. 2018: 1-6.
[11] [11] HUANG Y H, XIE Z, FANG G Q, et al. Routability-driven macro placement with embedded CNN-based prediction model [C]// IEEE DATE. Florence, Italy. 2019: 180-185.
[12] [12] YU T C, FANG S Y, CHIU H S, et al. Pin accessibility prediction and optimization with deep learning-based pin pattern recognition [C]// IEEE/ACM DAC. Las Vegas, NV, USA. 2019: 1-6.
[13] [13] CHAN W T J, DU Y, KAHNG A B, et al. BEOL stack-aware routability prediction from placement using data mining techniques [C]// IEEE ICCD. Scottsdale, AZ, USA. 2016: 41-48.
[14] [14] XIE Z, HUANG Y H, FANG G Q, et al. RouteNet: routability prediction for mixed-size designs using convolutional neural network [C]// IEEE/ACM ICCAD. San Diego, CA, USA. 2018: 1-8.
[15] [15] ISLAM R, SHAHJALAL M A. Late breaking results: predicting DRC violations using ensemble random forest algorithm [C]// IEEE/ACM DAC. Las Vegas, NV, USA. 2019: 1-2.
[16] [16] LIU W H, MANTIK S, CHOW W K, et al. ISPD 2019 initial detailed routing contest and benchmark with advanced routing rules [C]// ACM ISPD. San Francisco, CA, USA, 2019: 147-151.
[17] [17] TABRIZI A F, DARAV N K, RAKAI L, et al. Detailed routing violation prediction during placement using machine learning [C]// IEEE VLSI-DAT. Hsinchu, China. 2017: 1-4.
[18] [18] TABRIZI A F, DARAV N K, RAKAI L, et al. Eh?Predictor: a deep learning framework to identify detailed routing short violations from a placed netlist [J]. IEEE Trans Comput-Aided Des Integr Circ & Syst, 2020, 39(6): 1177-190.
[20] [20] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks [J]. Commun ACM, 2017, 60(6): 84-90.
[21] [21] KINGMA D P, BA L J. Adam: a method for stochastic optimization [EB/OL]. https://arxiv. org/abs/1412.6980, 2014.
[22] [22] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines [C]// ICML. Haifa, Israel. 2010: 807-814.
[23] [23] SERGEY L, CHRISTIAN S. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]// ICML. Lille, France. 2015: 448-456.
Get Citation
Copy Citation Text
LIANG Shuo, LI Haihua. Prediction of Detailed Routing Check Violations Using Deep Learning[J]. Microelectronics, 2022, 52(6): 1027
Category:
Received: Nov. 9, 2021
Accepted: --
Published Online: Mar. 11, 2023
The Author Email: