Journal of Innovative Optical Health Sciences, Volume. 12, Issue 5, 1940005(2019)
Aggregation-induced emission luminogen for in vivo three-photon fluorescence lifetime microscopic imaging
[1] [1] E. M. Hillman, “Optical brain imaging in vivo: Techniques and applications from animal to man," J. Biomed. Opt. 12, 051402 (2007).
[2] [2] E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain," Phil. Trans. Roy. Soc. Lond. Ser. B: Biol. Sci. 352, 727–735 (1997).
[3] [3] A. Bashkatov, E. Genina, V. Kochubey, V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J. Phys. D: Appl. Phys. 38, 2543 (2005).
[4] [4] S. I. Al-Juboori, A. Dondzillo, E. A. Stubblefield, G. Felsen, T. C. Lei, A. Klug, “Light scattering properties vary across different regions of the adult mouse brain," PLOS ONE 8, e67626 (2013).
[5] [5] F. Helmchen, W. Denk, “Deep tissue two-photon microscopy," Nat. Methods 2, 932 (2005).
[6] [6] Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, J. Qian, “Red emissive AIE nanodots with high two-photon absorption e±ciency at 1040 nm for deep-tissue in vivo imaging," Biomed. Opt. Expr. 6, 3783–3794 (2015).
[7] [7] S. Wang, W. Xi, F. Cai, X. Zhao, Z. Xu, J. Qian, S. He, “Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging," Theranostics 5, 251 (2015).
[8] [8] Y. Wang, M. Chen, N. Alifu, S. Li, W. Qin, A. Qin, B. Z. Tang, J. Qian, “Aggregation-induced emission luminogen with deep-red emission for through-skull three-photon fluorescence imaging of mouse," ACS Nano 11, 10452–10461 (2017).
[9] [9] W. Liu, Y. Wang, X. Han, P. Lu, L. Zhu, C. Sun, J. Qian, S. He, “Fluorescence resonance energy transfer (FRET) based nanoparticles composed of AIE luminogens and NIR dyes with enhanced threephoton near-infrared emission for in vivo brain angiography," Nanoscale 10, 10025–10032 (2018).
[10] [10] A. M. Smith, M. C. Mancini, S. M. Nie, “Bioimaging: Second window for in vivo imaging," Nat. Nanotechnol. 4, 710–711 (2009).
[11] [11] J. D. Bhawalkar, G. S. He, P. N. Prasad, “Nonlinear multiphoton processes in organic and polymeric materials," Rep. Prog. Phys. 60, 689–689 (1996).
[12] [12] O. S. Wolfbeis, “An overview of nanoparticles commonly used in fluorescent bioimaging," Chem. Soc. Rev. 44, 4743–4768 (2015).
[13] [13] W. Z. Yuan, P. Lu, S. Chen, J. W. Lam, Z. Wang, Y. Liu, H. S. Kwok, Y. Ma, B. Z. Tang, “Changing the behavior of chromophores from aggregationcaused quenching to aggregation-induced emission: Development of highly e±cient light emitters in the solid state," Adv. Mater. 22, 2159–2163 (2010).
[14] [14] J. Qian, B. Z. Tang, “AIE luminogens for bioimaging and theranostics: From organelles to animals," Chem-Us 3, 56-91 (2017).
[15] [15] S. M. Levchenko, A. Pliss, J. Qu, “Fluorescence lifetime imaging of fluorescent proteins as an effective quantitative tool for noninvasive study of intracellular processes," J. Innov. Opt. Health Sci. 11, 1730009 (2018).
[16] [16] J. Qiu, L. Wang, B. Z. Gao, J. Qu, Y. Shao, “Scanless multitarget-matching multiphoton excitation fluorescence microscopy," J. Innov. Optical Health Sci. 11, 1750013 (2018).
[17] [17] E. M. Graham, K. Iwai, S. Uchiyama, A. P. de Silva, S. W. Magennis, A. C. Jones, “Quantitative mapping of aqueous microfluidic temperature with sub-degree resolution using fluorescence lifetime imaging microscopy," Lab Chip 10, 1267–1273 (2010).
[18] [18] A. Esposito, “Beyond range: Innovating fluorescence microscopy," Remote Sens. 4, 111–119 (2012).
[19] [19] J. Ge, C. Kuang, S.-S. Lee, F.-J. Kao, “Fluorescence lifetime imaging with pulsed diode laser enabled stimulated emission," Opt. Expr. 20, 28216–28221 (2012).
[20] [20] D. M. Togashi, R. I. Romao, A. M. G. da Silva, A. J. Sobral, S. M. Costa, “Self-organization of a sulfonamido-porphyrin in Langmuir monolayers and Langmuir–Blodgett films," Phys. Chem. Chem. Phys. 7, 3874–3883 (2005).
[21] [21] M. A. Bennet, P. R. Richardson, J. Arlt, A. McCarthy, G. S. Buller, A. C. Jones, “Optically trapped microsensors for microfluidic temperature measurement by fluorescence lifetime imaging microscopy," Lab Chip 11, 3821–3828 (2011).
[22] [22] Z. Wang, Y. Zheng, D. Zhao, Z. Zhao, L. Liu, A. Pliss, F. Zhu, J. Liu, J. Qu, P. Luan, “Applications of fluorescence lifetime imaging in clinical medicine," J. Innov. Opt. Health Sci. 11, 1830001 (2018).
[23] [23] X. F. Wang, T. Uchida, D. M. Coleman, S. Minami, “A two-dimensional fluorescence lifetime imaging system using a gated image intensifier," Appl. Spectrosc. 45, 360–366 (1991).
[24] [24] H. C. Gerritsen, R. Sanders, A. Draaijer, C. Ince, Y. Levine, “Fluorescence lifetime imaging of oxygen in living cells," J. Fluorescence 7, 11–15 (1997).
[25] [25] L. Shang, N. Azadfar, F. Stockmar, W. Send, V. Trouillet, M. Bruns, D. Gerthsen, G. U. Nienhaus, “One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging," Small 7, 2614–2620 (2011).
[26] [26] W. Becker, A. Bergmann, C. Biskup, L. Kelbauskas, T. Zimmer, N. Klocker, K. Benndorf, “High resolution TCSPC lifetime imaging," Proc. Multiphoton Microscopy in the Biomedical Sciences III, Biomedical Optics, Vol. 4963 (San Jose, CA, United States, 2003).
[27] [27] D. Li, X. Zhao, W. Qin, H. Zhang, Y. Fei, L. Liu, K.-T. Yong, G. Chen, B. Z. Tang, J. Qian, “Toxicity assessment and long-term three-photon fluorescence imaging of bright aggregation-induced emission nanodots in zebrafish," Nano Res. 9, 1921–1933 (2016).
[28] [28] M. Narenji, M. Talaee, H. Moghimi, “Investigating the effects of size, charge, viscosity and bilayer flexibility on liposomal delivery under convective flow," Int. J. Pharmaceut. 513, 88–96 (2016).
[29] [29] L. Cheng, N. G. Horton, K. Wang, S. Chen, C. Xu, “Measurements of multiphoton action cross sections for multiphoton microscopy," Biomed. Opt. Expr. 5, 3427–3433 (2014).
[30] [30] G. Xing, S. Chakrabortty, S. W. Ngiam, Y. Chan, T. C. Sum, “Three-photon absorption in seeded Cdse/Cds nanorod heterostructures," J. Phys. Chem. C 115, 17711–17716 (2011).
[31] [31] Y. Wang, X. Han, W. Xi, J. Li, A. W. Roe, P. Lu, J. Qian, “Bright Aie nanoparticles with F127 encapsulation for deep-tissue three-photon intravital brain angiography," Adv. Healthc. Mater. 6, 1700685 (2017).
[32] [32] Y. Wang, V. D. Ta, Y. Gao, T. C. He, R. Chen, E. Mutlugun, H. V. Demir, H. D. Sun, “Stimulated emission and lasing from Cdse/Cds/Zns core-multishell quantum dots by simultaneous three-photon absorption," Adv. Mater. 26, 2954–2961 (2014).
[33] [33] Z. Zhu, J. Qian, X. Zhao, W. Qin, R. Hu, H. Zhang, D. Li, “Stable and size-tunable aggregation-induced emission nanoparticles encapsulated with nanographene oxide and applications in three-photon fluorescence bioimaging," ACS Nano 11, 588–597 (2016).
[34] [34] S. Goswami, B. Naskar, A. Dhara, D. K. Maiti, M. Kukulka, M. P. Mitoraj, M. Srebro-Hooper, C. Prodhan, K. Chaudhuri, “Aggregation induced emission based sensing platform for selective detection of Zn2+: Experimental and theoretical investigations," Chem. Phys. Chem. 20, 1630–1639 (2019).
Get Citation
Copy Citation Text
Huwei Ni, Zicong Xu, Dongyu Li, Ming Chen, Ben Zhong, Jun Qian. Aggregation-induced emission luminogen for in vivo three-photon fluorescence lifetime microscopic imaging[J]. Journal of Innovative Optical Health Sciences, 2019, 12(5): 1940005
Received: Apr. 28, 2019
Accepted: Jul. 3, 2019
Published Online: Oct. 22, 2019
The Author Email: Qian Jun (qianjun@zju.edu.cn)