Journal of Innovative Optical Health Sciences, Volume. 17, Issue 1, 2350011(2024)

In vivo label-free measurement of blood flow velocity symmetry based on dual line scanning third-harmonic generation microscopy excited at the 1700 nm window

Hui Cheng, Jincheng Zhong, Ping Qiu*, and Ke Wang**
Author Affiliations
  • Key Laboratory of Optoelectronic Devices, and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 P. R. China
  • show less
    References(35)

    [1] D. D. Backer, K. Donadello, D. O. Cortes. Monitoring the microcirculation. J. Clin. Monit. Comput., 26, 361-366(2012).

    [2] A. S. Popel, P. C. Johnson. Microcirculation and hemorheology. Annu. Rev. Fluid Mech., 37, 43-69(2005).

    [3] P. Carmeliet. Angiogenesis in health and disease. Nat. Med., 9, 653-660(2003).

    [4] R. H. Adams, K. Alitalo. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol., 8, 464-478(2007).

    [5] R. K. Jain. Molecular regulation of vessel maturation. Nat. Med., 9, 685-693(2003).

    [6] E. P. Meyer, A. Ulmann-Schuler, M. Staufenbiel, T. Krucker. Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer’s disease. PNAS, 105, 3587-3592(2008).

    [7] M. P. Pase, N. A. Grima, C. K. Stough, A. Scholey, A. Pipingas. Cardiovascular disease risk and cerebral blood flow velocity. Stroke, 43, 2803-2805(2012).

    [8] A. Cinar, G. Cetin, O. A. Kadirhan, S. Turgut, I. Ekinci, T. Asil. Determination of cerebral blood flow velocity and microembolic signals in essential thrombocytosis by transcranial doppler ultrasonography. Neurol. Res., 43, 157-163(2021).

    [9] D. S. Long, M. L. Smith, A. R. Pries, K. Ley, E. R. Damiano. Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution. PNAS, 101, 10060-10065(2004).

    [10] G. P. Galdi, A. M. Robertson, R. Rannacher, S. Turek. Hemodynamical Flows: Modeling, Analysis and Simulation(2008).

    [11] A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, T. N. Wiesel. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature, 324, 361-364(1986).

    [12] R. D. Frostig, E. E. Lieke, D. Y. Tso, A. Grinvald. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. PNAS, 87, 6082-6086(1990).

    [13] A. K. Dunn. Dynamic imaging of cerebral blood flow using laser speckle. J. Cereb. Blood Flow Metab., 21, 195-201(2001).

    [14] H. Li, K. Liu, L. Yao, X. Deng, Z. Zhang, P. Li. ID-OCTA: OCT angiography based on inverse SNR and decorrelation features. J. Innov. Opt. Heal. Sci., 14, 2130001(2021).

    [15] B. M. Ances, J. H. Greenberg, J. A. Detre. Laser doppler imaging of activation-flow coupling in the rat somatosensory cortex. Neuroimage, 10, 716-723(1999).

    [16] S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, K. Ugurbil. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. PNAS, 89, 5951-5955(1992).

    [17] P. A. Dyachenkotimoshina, A. N. Bashkatov, D. A. Alexandrov, V. I. Kochubey, V. V. Tuchin. Laser speckle contrast imaging for monitoring of acutepancreatitis at ischemia-reperfusion injury of thepancreas in rats. J. Innov. Opt. Heal. Sci., 15, 13(2022).

    [18] D. Fukumura, F. Yuan, W. L. Monsky, Y. Chen, R. K. Jain. Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am. J. Pathol., 151, 679-688(1997).

    [19] D. M. Brizel, B. Klitzman, J. M. Cook, J. Edwards, M. W. Dewhirst. A comparison of tumor and normal tissue microvascular hematocrits and red cell fluxes in a rat window chamber model. Int. J. Radiat. Oncol., 25, 269-276(1993).

    [20] B. Endrich, H. Reinhold, J. Gross, M. Intaglietta. Tissue perfusion inhomogeneity during early tumor growth in rats. J. Natl. Cancer Inst., 62, 387-395(1979).

    [21] M. L. Smith, D. S. Long, E. R. Damiano, K. Ley. Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys. J., 85, 637-645(2003).

    [22] W. S. Kamoun, S.-S. Chae, D. A. Lacorre, J. A. Tyrrell, M. Mitre, M. A. Gillissen, D. Fukumura, R. K. Jain, L. L. Munn. Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nat. Meth., 7, 655-660(2010).

    [23] I. H. Sarelius, B. R. Duling. Direct measurement of microvessel hematocrit, red cell flux, velocity, and transit time. Am. J. Physiol., 243, H1018-1026(1982).

    [24] J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, P. C. Johnson. Effect of erythrocyte aggregation on velocity profiles in venules. Am. J. Physiol., 280, H222-H236(2001).

    [25] W. Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).

    [26] D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, E. Beaurepaire. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Meth., 3, 47-53(2005).

    [27] M. J. Farrar, F. W. Wise, J. R. Fetcho, C. B. Schaffer. In vivo imaging of myelin in the vertebrate central nervous system using third harmonic generation microscopy. Biophys. J., 100, 1362-1371(2011).

    [28] K. Wang, Y. Pan, X. Chen, S. Tong, H. Liang, Y. Lu, P. Qiu. 3-photon fluorescence and third-harmonic generation imaging of myelin sheaths in mouse digital skin in vivo: A comparative study. J. Innov. Opt. Health Sci., 15, 2250003(2022).

    [29] X. Chen, Y. Pan, P. Qiu, K. Wang. Deep-skin third-harmonic generation (THG) imaging in vivo excited at the 2200nm window. J. Innov. Opt. Health Sci.Online Ready, 2243004(2022).

    [30] H. Liu, Z. Zhuang, S. Tong, W. Xin, J. Li, P. Qiu, K. Wang, X. Chen. In vivo deep-brain blood flow speed measurement through third-harmonic generation imaging excited at the 1700-nm window. Biomed. Opt. Exp., 11, 2738-2744(2020).

    [31] D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, C. Xu. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Exp., 17, 13354-13364(2009).

    [32] H. Cheng, X. Chen, J. Zhong, J. Li, P. Qiu, K. Wang. Label-free measurement of wall shear stress in the brain venule and arteriole using dual-wavelength third-harmonic-generation line-scanning imaging. Opt. Lett., 47, 5618-5621(2022).

    [33] S. Dietzel, J. Pircher, A. K. Nekolla, M. Gull, A. W. Brändli, U. Pohl, M. Rehberg. Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy. PLoS One, 9, e99615(2014).

    [34] T. N. Kim, P. W. Goodwill, Y. Chen, S. M. Conolly, C. B. Schaffer, D. Liepmann, R. A. Wang. Line-scanning particle image velocimetry: An optical approach for quantifying a wide range of blood flow speeds in live animals. PloS One, 7, e38590(2012).

    [35] A. Y. Shih, J. D. Driscoll, P. J. Drew, N. Nishimura, C. B. Schaffer, D. Kleinfeld. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J. Cerebr. Blood Flow Metab., 32, 1277-1309(2012).

    Tools

    Get Citation

    Copy Citation Text

    Hui Cheng, Jincheng Zhong, Ping Qiu, Ke Wang. In vivo label-free measurement of blood flow velocity symmetry based on dual line scanning third-harmonic generation microscopy excited at the 1700 nm window[J]. Journal of Innovative Optical Health Sciences, 2024, 17(1): 2350011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Mar. 10, 2023

    Accepted: Apr. 11, 2023

    Published Online: Feb. 28, 2024

    The Author Email: Qiu Ping (pingqiu@szu.edu.cn), Wang Ke (kewangfs@szu.edu.cn)

    DOI:10.1142/S1793545823500116

    Topics