International Journal of Extreme Manufacturing, Volume. 6, Issue 6, 62006(2024)
Design and manufacturing of micro/nanorobots
[1] [1] Aziz A, Medina-Snchez M, Koukourakis N, Wang J, Kuschmierz R, Radner H, Czarske J W and Schmidt O G 2019 Real-time IR tracking of single reflective micromotors through scattering tissues Adv. Funct. Mater.29 1905272
[2] [2] Xie L et al 2022 Kinetics-controlled super-assembly of asymmetric porous and hollow carbon nanoparticles as light-sensitive smart nanovehicles J. Am. Chem. Soc.144 1634–46
[3] [3] Gao Y X, Ou L Y, Liu K F, Guo Y, Li W Y, Xiong Z, Wu C J, Wang J Z, Tang J Y and Li D 2024 Template-guided silicon micromotor assembly for enhanced cell manipulation Angew. Chem., Int. Ed.63 e202405895
[4] [4] Zhao Y, Yuan M G, Yang H W, Li J, Ying Y L, Li J H, Wang W H and Wang S 2024 Versatile multi-wavelength light-responsive metal-organic frameworks micromotor through porphyrin metalation for water sterilization Small20 2305189
[5] [5] Wang W, Castro L A, Hoyos M and Mallouk T E 2012 Autonomous motion of metallic microrods propelled by ultrasound ACS Nano6 6122–32
[6] [6] Ahmed D, Baasch T, Jang B, Pane S, Dual J and Nelson B J 2016 Artificial swimmers propelled by acoustically activated flagella Nano Lett.16 4968–74
[7] [7] Cao W X, Wei W, Qiu B, Liu Y, Xie S, Fang Q B and Li X H 2024 Ultrasound-powered hydrogen peroxide-responsive Janus micromotors for targeted thrombolysis and recurrence inhibition Chem. Eng. J.483 149187
[8] [8] Chen T, Yang J, Zhao H, Li D J, Luo X Y, Fan Z Y, Ren B Y, Cai Y P and Dong R F 2024 Ultrasound-propelled nanomotors for efficient cancer cell ferroptosis J. Mater. Chem. B 12 667–77
[9] [9] Kim K, Liang Z X, Liu M L and Fan D E 2017 Biobased high-performance rotary micromotors for individually reconfigurable micromachine arrays and microfluidic applications ACS Appl. Mater. Interfaces9 6144–52
[10] [10] Yoshizumi Y, Honegger T, Berton K, Suzuki H and Peyrade D 2015 Trajectory control of self-propelled micromotors using AC electrokinetics Small11 5630–5
[11] [11] Panda S K, Debata S and Singh D P 2024 Characterizing the Janus colloidal particles in AC electric field and a step towards label-free cargo manipulation Chem. Phys. Impact8 100588
[12] [12] Zhang Y B et al 2019 Real-time tracking of fluorescent magnetic spore–based microrobots for remote detection of C. diff toxins Sci. Adv.5 eaau9650
[13] [13] Dong M et al 2020 3D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells Adv. Funct. Mater.30 1910323
[14] [14] Liu S Y, Chen B, Feng Y, Gao C, Du D L, Jiang T T, Tu Y F and Peng F 2024 Helical hydrogel micromotors for delivery of neural stem cells and restoration of neural connectivity Chem. Eng. J.479 147745
[15] [15] Docampo M A R, Hovorka O and Stdler B 2024 Magnetic micromotors crossing lipid membranes Nanoscale16 2432–43
[16] [16] Cao Y, Yi H Y, Ge K Y, Gao Y F, Zhang Z C and Feng H H 2024 Additively manufactured customized microhelix motors' bursting motion in mesoscopic tubes for vessel declogging RSC Adv.14 2720–6
[17] [17] Chen Q, Xue Y X, Huang Y L, Guo W Y, Wan M M and Shen J 2024 Mg-based micromotors for electrochemical detection of parkinson's disease blood biomarkers Sens. Actuators B 402 135035
[18] [18] Tolstoy V, Nikitin K, Kuzin A, Zhu F Y, Li X, Goltsman G, Gorin D, Huang G S, Solovev A A and Mei Y F 2024 Rapid synthesis of Pt(0) motors-microscrolls on a nickel surface via H2PtCl6-induced galvanic replacement reaction Chem. Commun.60 3182–5
[19] [19] Yu X P, Li Y N, Wu J and Ju H X 2014 Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker Anal. Chem.86 4501–7
[20] [20] Jin Z et al 2019 Multifunctional nanorobot system for active therapeutic delivery and synergistic chemo-photothermal therapy Nano Lett.19 8550–64
[21] [21] Glahn-Martnez B, Jurado-Snchez B, Benito-Pea E, Escarpa A and Moreno-Bondi M C 2024 Magnetic Janus micromotors for fluorescence biosensing of tacrolimus in oral fluids Biosens. Bioelectron.244 115796
[22] [22] Zhou X, Li Z T, Tan L H, Zhang Y and Jiao Y P 2020 Near-infrared light-steered graphene aerogel micromotor with high speed and precise navigation for active transport and microassembly ACS Appl. Mater. Interfaces12 23134–44
[23] [23] Liu X J, Chen W J, Zhao D F, Liu X X, Wang Y, Chen Y D and Ma X 2022 Enzyme-powered hollow nanorobots for active microsampling enabled by thermoresponsive polymer gating ACS Nano16 10354–63
[24] [24] Kichatov B, Korshunov A, Sudakov V, Golubkov A and Ryapolov P 2024 Droplet manipulation in liquid flow using of magnetic micromotors for drug delivery and microfluidic systems Colloids Surf. A 691 133891
[25] [25] Villa K, Krejov L, Novotn F, Heger Z, Sofer Z and Pumera M 2018 Cooperative multifunctional self-propelled paramagnetic microrobots with chemical handles for cell manipulation and drug delivery Adv. Funct. Mater.28 1804343
[26] [26] He Y Z, Wang L F, Zhao M, Fan Z H, Rong W B and Sun L N 2022 Flexible magnetic micropartners for micromanipulation at interfaces ACS Appl. Mater. Interfaces14 22570–81
[27] [27] Wan M et al 2020 Platelet-derived porous nanomotor for thrombus therapy Sci. Adv.6 eaaz9014
[28] [28] Stanton M M, Park B W, Vilela D, Bente K, Faivre D, Sitti M and Snchez S 2017 Magnetotactic bacteria powered biohybrids target E. coli biofilms ACS Nano11 9968–78
[29] [29] Yan X et al 2017 Multifunctional biohybrid magnetite microrobots for imaging-guided therapy Sci. Robot.2 eaaq1155
[30] [30] Gordn Pidal J M, Arruza L, Moreno-Guzmn M, Lpez M and Escarpa A 2024 Micromotor-based dual aptassay for early cost-effective diagnosis of neonatal sepsis Microchim. Acta191 106
[31] [31] Yang J H, Zheng J P, Ai R Q, Lai Y H, Chow T H, Shao L and Wang J F 2021 Plasmon-enhanced, self-traced nanomotors on the surface of silicon Angew. Chem.133 25162–71
[32] [32] Li J X, Gao W, Dong R F, Pei A, Sattayasamitsathit S and Wang J 2014 Nanomotor lithography Nat. Commun.5 5026
[33] [33] Oral C M, Ussia M and Pumera M 2021 Self-propelled activated carbon micromotors for “on-the-fly” capture of nitroaromatic explosives J. Phys. Chem. C 125 18040–5
[34] [34] Su Y Y, Zhang M J, Wang W, Deng C F, Peng J, Liu Z, Faraj Y, Ju X J, Xie R and Chu L Y 2019 Bubble-propelled hierarchical porous micromotors from evolved double emulsions Ind. Eng. Chem. Res.58 1590–600
[35] [35] Dai J, Cheng X, Li X F, Wang Z S, Wang Y F, Zheng J, Liu J, Chen J W, Wu C J and Tang J Y 2021 Solution-synthesized multifunctional Janus nanotree microswimmer Adv. Funct. Mater.31 2106204
[36] [36] Chen L, Gan Q B, Xiao X Q, Cai S G, Yan X H and Zheng C 2024 Bio-templated synthesis of MnO2-based micromotors for enhanced heavy metal removal from aqueous solutions J. Mater. Sci.59 4267–80
[37] [37] Muoz J, Urso M and Pumera M 2022 Self-propelled multifunctional microrobots harboring chiral supramolecular selectors for “enantiorecognition-on-the-fly” Angew. Chem., Int. Ed.61 e202116090
[38] [38] Gao W, Pei A, Dong R F and Wang J 2014 Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels J. Am. Chem. Soc.136 2276–9
[39] [39] Wang J M, Toebes B J, Plachokova A S, Liu Q, Deng D M, Jansen J A, Yang F and Wilson D A 2020 Self-propelled PLGA micromotor with chemotactic response to inflammation Adv. Healthcare Mater.9 1901710
[40] [40] Vilela D, Cosso U, Parmar J, Martnez-Villacorta A M, Gmez-Vallejo V, Llop J and Snchez S 2018 Medical imaging for the tracking of micromotors ACS Nano12 1220–7
[41] [41] Patio T, Feiner-Gracia N, Arqu X, Miguel-Lpez A, Jannasch A, Stumpp T, Schffer E, Albertazzi L and Snchez S 2018 Influence of enzyme quantity and distribution on the self-propulsion of non-Janus urease-powered micromotors J. Am. Chem. Soc.140 7896–903
[42] [42] Cui D H, Yan Z Y, Chen X W, Liu J Y and Wang W 2024 Electroosmotic flow spin tracers near chemical nano/micromotors Nanoscale16 2847–51
[43] [43] Kamankesh M, Kargari Aghmiouni D and Khoee S 2024 Copolymer-coated Au–Pt nanomotors for delivery of disulfiram prodrug ACS Appl. Nano Mater.7 10056–67
[44] [44] Zhao Z H, Chen J, Zhan G C, Gu S H, Cong J W, Liu M and Liu Y M 2024 Controlling the collective behaviors of ultrasound-driven nanomotors via frequency regulation Micromachines15 262
[45] [45] Gao C Y, Lin Z H, Wang D L, Wu Z G, Xie H and He Q 2019 Red blood cell-mimicking micromotor for active photodynamic cancer therapy ACS Appl. Mater. Interfaces11 23392–400
[46] [46] Xu L, Tang Y K, Ye W, Wang Z, Guan Z C, Wen M W and Yu T T 2024 Light-driven micro/nanorobot for biomimetic optical communication IEEE Robot. Autom. Lett.9 2287–94
[47] [47] Xiong J Y, Li X, He Z Y, Shi Y, Pan T, Zhu G S, Lu D Y and Xin H B 2024 Light-controlled soft bio-microrobot Light Sci. Appl.13 55
[48] [48] Boymelgreen A M, Balli T, Miloh T and Yossifon G 2018 Active colloids as mobile microelectrodes for unified label-free selective cargo transport Nat. Commun.9 760
[49] [49] Zhuang R C, Zhou D K, Chang X C, Mo Y, Zhang G Y and Li L Q 2022 Alternating current electric field driven topologically defective micro/nanomotors Appl. Mater. Today26 101314
[50] [50] Cao Q Y, Zhang Y F, Tang Y P, Wu C J, Wang J Z and Li D 2024 MOF-based magnetic microrobot swarms for pH-responsive targeted drug delivery Sci. China Chem.67 1216–23
[51] [51] Zhou D K, Yue H E, Chang X C, Mo Y, Liu Y, Chang H J and Li L Q 2024 Mimicking motor proteins: wall-guided self-navigation of microwheels ACS Nano18 8853–62
[52] [52] Wu J F, Jiao N D, Lin D J, Li N, Ma T Y, Tung S, Cheng W, Wu A H and Liu L Q 2024 Dual-responsive nanorobot-based marsupial robotic system for intracranial cross-scale targeting drug delivery Adv. Mater.36 2306876
[53] [53] Zhou Y X, Cao Z Q, Jiang L X, Chen Y, Cui X Y, Wu J R, Xie X, Wang L C and Ying T 2024 Magnetically actuated sonodynamic nanorobot collectives for potentiated ovarian cancer therapy Front. Bioeng. Biotechnol.12 1374423
[54] [54] Yu S M et al 2024 Magnetic-acoustic actuated spinous microrobot for enhanced degradation of organic pollutants Ultrason. Sonochem.102 106714
[55] [55] Ma X, Jang S, Popescu M N, Uspal W E, Miguel-Lpez A, Hahn K, Kim D P and Snchez S 2016 Reversed Janus micro/nanomotors with internal chemical engine ACS Nano10 8751–9
[56] [56] Yasa I C, Ceylan H, Bozuyuk U, Wild A M and Sitti M 2020 Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots Sci. Robot.5 eaaz3867
[57] [57] Liao P, Xing L X, Zhang S W and Sun D 2019 Magnetically driven undulatory microswimmers integrating multiple rigid segments Small15 1901197
[58] [58] Park J, Kim J Y, Pan S, Nelson B J and Choi H 2021 Acoustically mediated controlled drug release and targeted therapy with degradable 3D porous magnetic microrobots Adv. Healthcare Mater.10 2001096
[59] [59] Tang M J, Wang W, Li Z L, Liu Z M, Guo Z Y, Tian H Y, Liu Z, Ju X J, Xie R and Chu L Y 2018 Controllable microfluidic fabrication of magnetic hybrid microswimmers with hollow helical structures Ind. Eng. Chem. Res.57 9430–8
[60] [60] Yu Y R, Guo J H, Wang Y T, Shao C M, Wang Y and Zhao Y J 2020 Bioinspired helical micromotors as dynamic cell microcarriers ACS Appl. Mater. Interfaces12 16097–103
[61] [61] Cui D H, Lyu X, Duan S F, Peng Y X and Wang W 2022 Rhodium oxide nanorod motors powered by light across the full visible spectrum ACS Appl. Nano Mater.5 14235–40
[62] [62] Singh V V, Martin A, Kaufmann K, De Oliveira S D S and Wang J 2015 Zirconia/graphene oxide hybrid micromotors for selective capture of nerve agents Chem. Mater.27 8162–9
[63] [63] Li J X, Li T L, Xu T L, Kiristi M, Liu W J, Wu Z G and Wang J 2015 Magneto–acoustic hybrid nanomotor Nano Lett.15 4814–21
[64] [64] Soto F, Wagner G L, Garcia-Gradilla V, Gillespie K T, Lakshmipathy D R, Karshalev E, Angell C, Chen Y and Wang J 2016 Acoustically propelled nanoshells Nanoscale8 17788–93
[65] [65] Ren J Y, Hu P C, Ma E H, Zhou X Y, Wang W J, Zheng S H and Wang H 2022 Enzyme-powered nanomotors with enhanced cell uptake and lysosomal escape for combined therapy of cancer Appl. Mater. Today27 101445
[66] [66] Wang W, Wu Z G, Yang L, Si T Y and He Q 2022 Rational design of polymer conical nanoswimmers with upstream motility ACS Nano16 9317–28
[67] [67] Vyskoil J, Mayorga-Martinez C C, Jablonsk E, Novotn F, Ruml T and Pumera M 2020 Cancer cells microsurgery via asymmetric bent surface Au/Ag/Ni microrobotic scalpels through a transversal rotating magnetic field ACS Nano14 8247–56
[68] [68] X L J et al 2016 Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract ACS Nano10 9536–42
[69] [69] Ye Z H, Wang Y, Liu S H, Xu D D, Wang W and Ma X 2021 Construction of nanomotors with replaceable engines by supramolecular machine-based host–guest assembly and disassembly J. Am. Chem. Soc.143 15063–72
[70] [70] Moo J G S, Presolski S and Pumera M 2016 Photochromic spatiotemporal control of bubble-propelled micromotors by a spiropyran molecular switch ACS Nano10 3543–52
[71] [71] Ceylan H, Yasa I C, Yasa O, Tabak A F, Giltinan J and Sitti M 2019 3D-printed biodegradable microswimmer for theranostic cargo delivery and release ACS Nano13 3353–62
[72] [72] Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y F and Wang J 2013 Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications ACS Nano7 9232–40
[73] [73] Wu Z G, Li T L, Gao W, Xu T L, Jurado-snchez B, Li J X, Gao W W, He Q, Zhang L F and Wang J 2015 Cell-membrane-coated synthetic nanomotors for effective biodetoxification Adv. Funct. Mater.25 3881–7
[74] [74] Jang B et al 2015 Undulatory locomotion of magnetic multilink nanoswimmers Nano Lett.15 4829–33
[75] [75] Ji F T, Li T L, Yu S M, Wu Z G and Zhang L 2021 Propulsion gait analysis and fluidic trapping of swinging flexible nanomotors ACS Nano15 5118–28
[76] [76] Zheng Z Q, Wang H P, Dong L X, Shi Q, Li J N, Sun T, Huang Q and Fukuda T 2021 Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling Nat. Commun.12 411
[77] [77] Lin X Y et al 2021 Flying squirrel-inspired motion control of a light-deformed Pt-PAzoMA micromotor through drag force manipulation ACS Appl. Mater. Interfaces13 30106–17
[78] [78] Maria-Hormigos R, Jurado-Sanchez B, Vazquez L and Escarpa A 2016 Carbon allotrope nanomaterials based catalytic micromotors Chem. Mater.28 8962–70
[79] [79] Yuan K S, De La Asuncin-Nadal V, Li Y L, Jurado-Snchez B and Escarpa A 2020 Graphdiyne tubular micromotors: electrosynthesis, characterization and self-propelled capabilities Appl. Mater. Today20 100743
[80] [80] Maric T, Nasir M Z M, Webster R D and Pumera M 2020 Tailoring metal/TiO2 interface to influence motion of light-activated Janus micromotors Adv. Funct. Mater.30 1908614
[81] [81] Valdez-Garduo M, Leal-Estrada M, Oliveros-Mata E S, Sandoval-Bojorquez D I, Soto F, Wang J and Garcia-Gradilla V 2020 Density asymmetry driven propulsion of ultrasound-powered Janus micromotors Adv. Funct. Mater.30 2004043
[82] [82] Zhou M F, Hou T, Li J X, Yu S S, Xu Z J, Yin M, Wang J and Wang X L 2019 Self-propelled and targeted drug delivery of poly(aspartic acid)/iron–zinc microrocket in the stomach ACS Nano13 1324–32
[83] [83] Maric T, Nasir M Z M, Rosli N F, Budanovi M, Webster R D, Cho N J and Pumera M 2020 Microrobots derived from variety plant pollen grains for efficient environmental clean up and as an anti-cancer drug carrier Adv. Funct. Mater.30 2000112
[84] [84] Hortelo A C, Carrascosa R, Murillo-Cremaes N, Patio T and Snchez S 2019 Targeting 3D bladder cancer spheroids with urease-powered nanomotors ACS Nano13 429–39
[85] [85] Wang L, Hortelo A C, Huang X and Snchez S 2019 Lipase-powered mesoporous silica nanomotors for triglyceride degradation Angew. Chem., Int. Ed.58 7992–6
[86] [86] Wang J, Si J W, Li J Y, Zhang P P, Wang Y, Zhang W, Jin B, Li W Q, Li N and Miao S D 2021 Self-propelled nanojets for fenton catalysts based on halloysite with embedded Pt and outside-grafted Fe3O4ACS Appl. Mater. Interfaces13 49017–26
[87] [87] Liu W J, Chen X, Lu X L, Wang J, Zhang Y N and Gu Z W 2020 From passive inorganic oxides to active matters of micro/nanomotors Adv. Funct. Mater.30 2003195
[88] [88] Wang S N, Liu X J, Wang Y, Xu D D, Liang C Y, Guo J H and Ma X 2019 Biocompatibility of artificial micro/nanomotors for use in biomedicine Nanoscale11 14099–112
[89] [89] Hermanov S and Pumera M 2018 Polymer platforms for micro- and nanomotor fabrication Nanoscale10 7332–42
[90] [90] Soto F, Karshalev E, Zhang F Y, Esteban Fernandez De Avila B, Nourhani A and Wang J 2022 Smart materials for microrobots Chem. Rev.122 5365–403
[91] [91] Chen C R, Ding S C and Wang J 2024 Materials consideration for the design, fabrication and operation of microscale robots Nat. Rev. Mater.9 159–72
[92] [92] Chen X Z, Hoop M, Mushtaq F, Siringil E, Hu C Z, Nelson B J and Pan S 2017 Recent developments in magnetically driven micro- and nanorobots Appl. Mater. Today9 37–48
[93] [93] Katuri J, Ma X, Stanton M M and Snchez S 2017 Designing micro- and nanoswimmers for specific applications Acc. Chem. Res.50 2–11
[94] [94] Snchez S, Soler L and Katuri J 2015 Chemically powered micro-and nanomotors Angew. Chem., Int. Ed.54 1414–44
[95] [95] Ren Z and Gao P X 2014 A review of helical nanostructures: growth theories, synthesis strategies and properties Nanoscale6 9366–400
[96] [96] Banno T, Ueno K, Kojima T and Asakura K 2024 Induction for self-propelled motion of artificial objects with/without shape anisotropy J. Oleo Sci.73 509–18
[97] [97] Xu B R, Zhang B R, Wang L, Huang G S and Mei Y F 2018 Tubular micro/nanomachines: from the basics to recent advances Adv. Funct. Mater.28 1705872
[98] [98] Zhang X, Fu Q R, Duan H W, Song J B and Yang H H 2021 Janus nanoparticles: from fabrication to (bio)applications ACS Nano15 6147–91
[99] [99] Fu J Y, An D, Song Y L, Wang C, Qiu M and Zhang H 2020 Janus nanoparticles for cellular delivery chemotherapy: recent advances and challenges Coord. Chem. Rev.422 213467
[100] [100] Wang H and Pumera M 2015 Fabrication of micro/nanoscale motors Chem. Rev.115 8704–35
[101] [101] Ye J M, Fan Y Y, Niu G L, Zhou B L, Kang Y and Ji X Y 2024 Intelligent micro/nanomotors: fabrication, propulsion, and biomedical applications Nano Today55 102212
[102] [102] Liu D, Wang T and Lu Y 2022 Untethered microrobots for active drug delivery: from rational design to clinical settings Adv. Healthcare Mater.11 2102253
[103] [103] Xu D D, Wang Y, Liang C Y, You Y Q, Sanchez S and Ma X 2020 Self-propelled micro/nanomotors for on-demand biomedical cargo transportation Small16 1902464
[104] [104] Gao C, Feng Y, Wilson D A, Tu Y F and Peng F 2022 Micro-Nano motors with taxis behavior: principles, designs, and biomedical applications Small18 2106263
[105] [105] Zhou C C, Deng J Y, Hao Tay J, Basu S, Yang J Y, Li J, Yang C M, Zhao Z and Cho N J 2024 Multifunctional material building blocks from plant pollen Annu. Rev. Chem. Biomol.15 1–24
[106] [106] Chen T, Cai Y P, Ren B Y, Snchez B J and Dong R F 2024 Intelligent micro/nanorobots based on biotemplates Mater. Horiz.11 2772–801
[107] [107] Koleoso M, Feng X, Xue Y, Li Q, Munshi T and Chen X 2020 Micro/nanoscale magnetic robots for biomedical applications Mater. Today Bio8 100085
[108] [108] Ou J F, Liu K, Jiang J M, Wilson D A, Liu L, Wang F, Wang S H, Tu Y F and Peng F 2020 Micro-/nanomotors toward biomedical applications: the recent progress in biocompatibility Small16 1906184
[109] [109] Ye H, Wang Y, Xu D D, Liu X J, Liu S M and Ma X 2021 Design and fabrication of micro/Nano-motors for environmental and sensing applications Appl. Mater. Today23 101007
[110] [110] Peng F, Tu Y F and Wilson D A 2017 Micro/nanomotors towards in vivo application: cell, tissue and biofluid Chem. Soc. Rev.46 5289–310
[111] [111] Dutta S, Noh S, Gual R S, Chen X Z, Pan S, Nelson B J and Choi H 2024 Recent developments in metallic degradable micromotors for biomedical and environmental remediation applications Nano-Micro. Lett.16 41
[112] [112] Wang Q Q, Zhang J C, Yu J F, Lang J, Lyu Z, Chen Y F and Zhang L 2023 Untethered small-scale machines for microrobotic manipulation: from individual and multiple to collective machines ACS Nano17 13081–109
[113] [113] Wang Q Q, Yang S H and Zhang L 2024 Untethered micro/nanorobots for remote sensing: toward intelligent platform Nano-Micro. Lett.16 40
[114] [114] Gao W, Dong R F, Thamphiwatana S, Li J X, Gao W W, Zhang L F and Wang J 2015 Artificial micromotors in the mouse's stomach: a step toward in vivo use of synthetic motors ACS Nano9 117–23
[115] [115] Wei X L, Beltrn-Gastlum M, Karshalev E, Esteban-fernndez De vila B, Zhou J R, Ran D N, Angsantikul P, Fang R H, Wang J and Zhang L F 2019 Biomimetic micromotor enables active delivery of antigens for oral vaccination Nano Lett.19 1914–21
[116] [116] Gao W, D'Agostino M, Garcia-Gradilla V, Orozco J and Wang J 2013 Multi-fuel driven Janus micromotors Small9 467–71
[117] [117] Lu X L, Shen H, Wei Y, Ge H B, Wang J, Peng H M and Liu W J 2020 Ultrafast growth and locomotion of dandelion-like microswarms with tubular micromotors Small16 2003678
[118] [118] Gao C Y, Zhou C, Lin Z H, Yang M C and He Q 2019 Surface wettability-directed propulsion of glucose-powered nanoflask motors ACS Nano13 12758–66
[119] [119] Hortelo A C, Patio T, Perez-Jimnez A, Blanco and Snchez S 2018 Enzyme-powered nanobots enhance anticancer drug delivery Adv. Funct. Mater.28 1705086
[120] [120] Park B W, Zhuang J, Yasa O and Sitti M 2017 Multifunctional bacteria-driven microswimmers for targeted active drug delivery ACS Nano11 8910–23
[121] [121] Xin H B, Zhao N, Wang Y N, Zhao X T, Pan T, Shi Y and Li B J 2020 Optically controlled living micromotors for the manipulation and disruption of biological targets Nano Lett.20 7177–85
[122] [122] Du S N, Wang H G, Zhou C, Wang W and Zhang Z X 2020 Motor and rotor in one: light-active ZnO/Au twinned rods of tunable motion modes J. Am. Chem. Soc.142 2213–7
[123] [123] Lee J G, Al Harraq A, Bishop K J M and Bharti B 2021 Fabrication and electric field-driven active propulsion of patchy microellipsoids J. Phys. Chem. B 125 4232–40
[124] [124] Wu Y, Fu A F and Yossifon G 2020 Active particles as mobile microelectrodes for selective bacteria electroporation and transport Sci. Adv.6 eaay4412
[125] [125] Akolpoglu M B, Alapan Y, Dogan N O, Baltaci S F, Yasa O, Aybar Tural G and Sitti M 2022 Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery Sci. Adv.8 eabo6163
[126] [126] Zheng S H, Wang Y, Pan S H, Ma E H, Jin S, Jiao M, Wang W J, Li J J, Xu K and Wang H 2021 Biocompatible nanomotors as active diagnostic imaging agents for enhanced magnetic resonance imaging of tumor tissues in vivo Adv. Funct. Mater.31 2100936
[127] [127] Ren L Q, Zhou D K, Mao Z M, Xu P T, Huang T J and Mallouk T E 2017 Rheotaxis of bimetallic micromotors driven by chemical–acoustic hybrid power ACS Nano11 10591–8
[128] [128] Li T L, Zhang A N, Shao G B, Wei M S, Guo B, Zhang G Y, Li L Q and Wang W 2018 Janus microdimer surface walkers propelled by oscillating magnetic fields Adv. Funct. Mater.28 1706066
[129] [129] Mayorga-Martinez C C, Fojt M, Vyskoil J, Cho N J and Pumera M 2022 Pollen-based magnetic microrobots are mediated by electrostatic forces to attract, manipulate, and kill cancer cells Adv. Funct. Mater.32 2207272
[130] [130] Wang X P, Qin X H, Hu C Z, Terzopoulou A, Chen X Z, Huang T Y, Maniura-Weber K, Pan S and Nelson B J 2018 3D printed enzymatically biodegradable soft helical microswimmers Adv. Funct. Mater.28 1804107
[131] [131] Yue H E, Chang X C, Liu J M, Zhou D K and Li L Q 2022 Wheel-like magnetic-driven microswarm with a band-aid imitation for patching up microscale intestinal perforation ACS Appl. Mater. Interfaces14 8743–52
[132] [132] Wang Q Q, Du X Z, Jin D D and Zhang L 2022 Real-time ultrasound doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow ACS Nano16 604–16
[133] [133] Wang Q L et al 2024 Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted delivery Sci. Robot.9 eadh1978
[134] [134] Wang Q Q, Chan K F, Schweizer K, Du X Z, Jin D D, Yu S C H, Nelson B J and Zhang L 2021 Ultrasound doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery Sci. Adv.7 eabe5914
[135] [135] Alapan Y, Bozuyuk U, Erkoc P, Karacakol A C and Sitti M 2020 Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow Sci. Robot.5 eaba5726
[136] [136] Liu M, Pan L Q, Piao H, Sun H Y, Huang X F, Peng C D and Liu Y M 2015 Magnetically actuated wormlike nanomotors for controlled cargo release ACS Appl. Mater. Interfaces7 26017–21
[137] [137] Ji Y X, Lin X K, Zhang H Y, Wu Y J, Li J B and He Q 2019 Thermoresponsive polymer brush modulation on the direction of motion of phoretically driven Janus micromotors Angew. Chem.131 4228–32
[138] [138] Gordn J, Arruza L, Ibez M D, Moreno-Guzmn M, Lpez M and Escarpa A 2022 On the move-sensitive fluorescent aptassay on board catalytic micromotors for the determination of interleukin-6 in ultra-low serum volumes for neonatal sepsis diagnostics ACS Sens.7 3144–52
[139] [139] Esteban-fernndez De vila B, Lopez-Ramirez M A, Bez D F, Jodra A, Singh V V, Kaufmann K and Wang J 2016 Aptamer-modified graphene-based catalytic micromotors: off–on fluorescent detection of ricin ACS Sens.1 217–21
[140] [140] Yuan K S, De La Asuncion-Nadal V, Jurado-Snchez B and Escarpa A 2020 2D nanomaterials wrapped Janus micromotors with built-in multiengines for bubble, magnetic, and light driven propulsion Chem. Mater.32 1983–92
[141] [141] Zhou L, Zhang H W, Bao H M, Wei Y, Fu H and Cai W P 2020 Monodispersed snowman-like Ag-MoS2 Janus nanoparticles as chemically self-propelled nanomotors ACS Appl. Nano Mater.3 624–32
[142] [142] De La Asuncin-Nadal V, Pacheco M, Jurado-Snchez B and Escarpa A 2020 Chalcogenides-based tubular micromotors in fluorescent assays Anal. Chem.92 9188–93
[143] [143] Maric T, Nasir M Z M, Mayorga-Martinez C C, Rosli N F, Budanovi M, Szklov K I, Webster R D, Sofer Z and Pumera M 2019 Cloisite microrobots as self-propelling cleaners for fast and efficient removal of improvised organophosphate nerve agents ACS Appl. Mater. Interfaces11 31832–43
[144] [144] Singh V V, Jurado-Snchez B, Sattayasamitsathit S, Orozco J, Li J X, Galarnyk M, Fedorak Y and Wang J 2015 Multifunctional silver-exchanged zeolite micromotors for catalytic detoxification of chemical and biological threats Adv. Funct. Mater.25 2147–55
[145] [145] Liu X X, Sun X, Peng Y X, Wang Y, Xu D D, Chen W J, Wang W, Yan X H and Ma X 2022 Intrinsic properties enabled metal organic framework micromotors for highly efficient self-propulsion and enhanced antibacterial therapy ACS Nano16 14666–78
[146] [146] Ma X, Wang X, Hahn K and Snchez S 2016 Motion control of urea-powered biocompatible hollow microcapsules ACS Nano10 3597–605
[147] [147] Li J Y, Li X J, Luo T, Wang R, Liu C C, Chen S X, Li D F, Yue J B, Cheng S H and Sun D 2018 Development of a magnetic microrobot for carrying and delivering targeted cells Sci. Robot.3 eaat8829
[148] [148] Wu Z G, Lin X K, Zou X, Sun J M and He Q 2015 Biodegradable protein-based rockets for drug transportation and light-triggered release ACS Appl. Mater. Interfaces7 250–5
[149] [149] Bernasconi R, Mauri E, Rossetti A, Rimondo S, Suriano R, Levi M, Sacchetti A, Pan S, Magagnin L and Rossi F 2021 3D integration of pH-cleavable drug-hydrogel conjugates on magnetically driven smart microtransporters Mater. Des.197 109212
[150] [150] Lu X L, Ou H, Wei Y, Ding X Y, Wang X, Zhao C, Bao J H and Liu W J 2022 Superfast fuel-free tubular hydrophobic micromotors powered by ultrasound Sens. Actuators B 372 132667
[151] [151] Chang X C, Li L Q, Li T L, Zhou D K and Zhang G Y 2016 Accelerated microrockets with a biomimetic hydrophobic surface RSC Adv.6 87213–20
[152] [152] Zhou M Y, Xing Y, Li X Y, Du X, Xu T L and Zhang X J 2020 Cancer cell membrane camouflaged semi-yolk@spiky-shell nanomotor for enhanced cell adhesion and synergistic therapy Small16 2003834
[153] [153] Go G et al 2021 Multifunctional biodegradable microrobot with programmable morphology for biomedical applications ACS Nano15 1059–76
[154] [154] Yang Q X, Tang S S, Lu D D, Li Y Y, Wan F C, Li J H, Chen Q W, Cong Z Q, Zhang X J and Wu S 2022 Pollen typhae-based magnetic-powered microrobots toward acute gastric bleeding treatment ACS Appl. Bio Mater.5 4425–34
[155] [155] Gao L, Zhang K and Chen Y M 2012 Dumpling-like nanocomplexes of foldable Janus polymer sheets and spheres ACS Macro Lett.1 1143–5
[156] [156] Goodarzi H, Jadidi K, Pourmotabed S, Sharifi E and Aghamollaei H 2019 Preparation and in vitro characterization of cross-linked collagen–gelatin hydrogel using EDC/NHS for corneal tissue engineering applications Int. J. Biol. Macromol.126 620–32
[157] [157] Simmchen J, Baeza A, Ruiz-Molina D and Vallet-Reg M 2014 Improving catalase-based propelled motor endurance by enzyme encapsulation Nanoscale6 8907–13
[158] [158] Singh A V, Hosseinidoust Z, Park B W, Yasa O and Sitti M 2017 Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery ACS Nano11 9759–69
[159] [159] Luo M, Li S L, Wan J S, Yang C L, Chen B D and Guan J G 2020 Enhanced propulsion of urease-powered micromotors by multilayered assembly of ureases on Janus magnetic microparticles Langmuir36 7005–13
[160] [160] Singh D P, Uspal W E, Popescu M N, Wilson L G and Fischer P 2018 Photogravitactic microswimmers Adv. Funct. Mater.28 1706660
[161] [161] Yang Q X, Xu H Y, Wen H T, Zhao H, Liu X Y, Cai Y P, Wang H and Dong R F 2021 Graphene oxide induced enhancement of light-driven micromotor with biocompatible fuels Appl. Mater. Today22 100943
[162] [162] Urso M, Ussia M and Pumera M 2023 Smart micro- and nanorobots for water purification Nat. Rev. Bioeng.1 236–51
[163] [163] Das S, Garg A, Campbell A I, Howse J, Sen A, Velegol D, Golestanian R and Ebbens S J 2015 Boundaries can steer active Janus spheres Nat. Commun.6 8999
[164] [164] Chen X, Xu Y K, Zhou C, Lou K, Peng Y X, Zhang H P and Wang W 2022 Unraveling the physiochemical nature of colloidal motion waves among silver colloids Sci. Adv.8 eabn9130
[165] [165] Aziz A, Holthof J, Meyer S, Schmidt O G and Medina-Snchez M 2021 Dual ultrasound and photoacoustic tracking of magnetically driven micromotors: from in vitro to in vivo Adv. Healthcare Mater.10 2101077
[166] [166] Guo J H, Gallegos J J, Tom A R and Fan D L 2018 Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices ACS Nano12 1179–87
[167] [167] Liu M H et al 2022 Light-driven Au–ZnO nanorod motors for enhanced photocatalytic degradation of tetracycline Nanoscale14 12804–13
[168] [168] Kim K, Xu X B, Guo J H and Fan D L 2014 Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks Nat. Commun.5 3632
[169] [169] L L T et al 2016 Magnetically propelled fish-like nanoswimmers Small12 6098–105
[170] [170] Xu X B, Kim K and Fan D L 2015 Tunable release of multiplex biochemicals by plasmonically active rotary nanomotors Angew. Chem.127 2555–9
[171] [171] Wang H, Moo J G S and Pumera M 2016 From nanomotors to micromotors: the influence of the size of an autonomous bubble-propelled device upon its motion ACS Nano10 5041–50
[172] [172] Lee S, Kim S, Kim S, Kim J Y, Moon C, Nelson B J and Choi H 2018 A capsule-type microrobot with pick-and-drop motion for targeted drug and cell delivery Adv. Healthcare Mater.7 1700985
[173] [173] Lee S, Kim J Y, Kim J, Hoshiar A K, Park J, Lee S, Kim J, Pan S, Nelson B J and Choi H 2020 A needle-type microrobot for targeted drug delivery by affixing to a microtissue Adv. Healthcare Mater.9 1901697
[174] [174] Chen Y D et al 2022 Carbon helical nanorobots capable of cell membrane penetration for single cell targeted SERS bio-sensing and photothermal cancer therapy Adv. Funct. Mater.32 2200600
[175] [175] Medina-Snchez M, Schwarz L, Meyer A K, Hebenstreit F and Schmidt O G 2016 Cellular cargo delivery: toward assisted fertilization by sperm-carrying micromotors Nano Lett.16 555–61
[176] [176] Pourrahimi A M, Villa K, Manzanares Palenzuela C L, Ying Y L, Sofer Z and Pumera M 2019 Catalytic and light-driven ZnO/Pt Janus Nano/micromotors: switching of motion mechanism via interface roughness and defect tailoring at the nanoscale Adv. Funct. Mater.29 1808678
[177] [177] Pourrahimi A M, Villa K, Ying Y L, Sofer Z and Pumera M 2018 ZnO/ZnO2/Pt Janus micromotors propulsion mode changes with size and interface structure: enhanced nitroaromatic explosives degradation under visible light ACS Appl. Mater. Interfaces10 42688–97
[178] [178] Palacci J, Sacanna S, Vatchinsky A, Chaikin P M and Pine D J 2013 Photoactivated colloidal dockers for cargo transportation J. Am. Chem. Soc.135 15978–81
[179] [179] Zheng C, Li Z Q, Xu T T, Chen L, Fang F, Wang D, Dai P Q, Wang Q T, Wu X Y and Yan X H 2021 Spirulina-templated porous hollow carbon@magnetite core-shell microswimmers Appl. Mater. Today22 100962
[180] [180] Kim E, Jeon S, An H K, Kianpour M, Yu S W, Kim J Y, Rah J C and Choi H 2020 A magnetically actuated microrobot for targeted neural cell delivery and selective connection of neural networks Sci. Adv.6 eabb5696
[181] [181] Wang W, Wu Z G, Lin X K, Si T Y and He Q 2019 Gold-nanoshell-functionalized polymer nanoswimmer for photomechanical poration of single-cell membrane J. Am. Chem. Soc.141 6601–8
[182] [182] Esteban-Fernndez De vila B, Lopez-ramirez M A, Mundaca-uribe R, Wei X L, Ramrez-herrera D E, Karshalev E, Nguyen B, Fang R H, Zhang L F and Wang J 2020 Multicompartment tubular micromotors toward enhanced localized active delivery Adv. Mater.32 2000091
[183] [183] Li T L, Li J X, Morozov K I, Wu Z G, Xu T L, Rozen I, Leshansky A M, Li L Q and Wang J 2017 Highly efficient freestyle magnetic nanoswimmer Nano Lett.17 5092–8
[184] [184] Fan X J, Sun M M, Sun L N and Xie H 2020 Ferrofluid droplets as liquid microrobots with multiple deformabilities Adv. Funct. Mater.30 2000138
[185] [185] Liu M, Wang Y X, Kuai Y B, Cong J W, Xu Y L, Piao H G, Pan L Q and Liu Y M 2019 Magnetically powered shape-transformable liquid metal micromotors Small15 1905446
[186] [186] Xin C et al 2021 Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment ACS Nano15 18048–59
[187] [187] Ghosh A et al 2020 Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo Sci. Adv.6 eabb4133
[188] [188] Gao W, Feng X M, Pei A, Gu Y E, Li J X and Wang J 2013 Seawater-driven magnesium based Janus micromotors for environmental remediation Nanoscale5 4696–700
[189] [189] Gao W, Pei A and Wang J 2012 Water-driven micromotors ACS Nano6 8432–8
[190] [190] Chen Q W, Tang S S, Li Y Y, Cong Z Q, Lu D D, Yang Q X, Zhang X J and Wu S 2021 Multifunctional metal–organic framework exoskeletons protect biohybrid sperm microrobots for active drug delivery from the surrounding threats ACS Appl. Mater. Interfaces13 58382–92
[191] [191] Deng Q Q, Zhang L, Lv W, Liu X M, Ren J S and Qu X G 2021 Biological mediator-propelled nanosweeper for nonpharmaceutical thrombus therapy ACS Nano15 6604–13
[192] [192] Xiang Z C, Jiang G X, Fan D, Tian J S, Hu Z Y and Fang Q J 2020 Drug-internalized bacterial swimmers for magnetically manipulable tumor-targeted drug delivery Nanoscale12 13513–22
[193] [193] Wang Q L, Dong R F, Wang C, Xu S Y, Chen D C, Liang Y Y, Ren B Y, Gao W and Cai Y P 2019 Glucose-fueled micromotors with highly efficient visible-light photocatalytic propulsion ACS Appl. Mater. Interfaces11 6201–7
[194] [194] Wang K, Wang W J, Pan S H, Fu Y M, Dong B and Wang H 2020 Fluorescent self-propelled covalent organic framework as a microsensor for nitro explosive detection Appl. Mater. Today19 100550
[195] [195] Zheng J R, Qi R Q, Dai C L, Li G and Sang M M 2022 Enzyme catalysis biomotor engineering of neutrophils for nanodrug delivery and cell-based thrombolytic therapy ACS Nano16 2330–44
[196] [196] Li X R, Zhang B Y, Jakobi T, Yu Z L, Ren L Q and Zhang Z H 2024 Laser-based bionic manufacturing Int. J. Extrem Manuf.6 042003
[197] [197] Lian Z X, Zhou J H, Ren W F, Chen F Z, Xu J K, Tian Y L and Yu H D 2024 Recent progress in bio-inspired macrostructure array materials with special wettability− from surface engineering to functional applications Int. J. Extrem Manuf.6 012008
[198] [198] Huang Z Y, Shao G B and Li L Q 2023 Micro/Nano functional devices fabricated by additive manufacturing Prog. Mater. Sci.131 101020
[199] [199] Zolfaghari A, Chen T T and Yi A Y 2019 Additive manufacturing of precision optics at micro and nanoscale Int. J. Extrem Manuf.1 012005
[200] [200] Sui S et al 2023 Additive manufacturing of magnesium and its alloys: process-formability-microstructure-performance relationship and underlying mechanism Int. J. Extrem. Manuf.5 042009
[201] [201] Huang Z Y, Shao G B, Zhou D K, Deng X H, Qiao J and Li L Q 2023 3D printing of high-precision and ferromagnetic functional devices Int. J. Extrem. Manuf.5 035501
[202] [202] Feng Y W, Chang X C, Liu H, Hu Y, Li T L and Li L Q 2021 Multi-response biocompatible Janus micromotor for ultrasonic imaging contrast enhancement Appl. Mater. Today23 101026
[203] [203] Llopis-Lorente A, Garca-Fernndez A, Murillo-Cremaes N, Hortelo A C, Patio T, Villalonga R, Sancenn F, Martnez-Mez R and Snchez S 2019 Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery ACS Nano13 12171–83
[204] [204] Ramos-Docampo M A, Fernndez-Medina M, Taipaleenmki E, Hovorka O, Salgueirio V and Stdler B 2019 Microswimmers with heat delivery capacity for 3D cell spheroid penetration ACS Nano13 12192–205
[205] [205] Wu Y J, Wu Z G, Lin X K, He Q and Li J B 2012 Autonomous movement of controllable assembled Janus capsule motors ACS Nano6 10910–6
[206] [206] Huang W J, Manjare M and Zhao Y P 2013 Catalytic nanoshell micromotors J. Phys. Chem. C 117 21590–6
[207] [207] Xuan M J, Shao J X, Gao C Y, Wang W, Dai L R and He Q 2018 Self-propelled nanomotors for thermomechanically percolating cell membranes Angew. Chem., Int. Ed.57 12463–7
[208] [208] Karshalev E et al 2019 Micromotors for active delivery of minerals toward the treatment of iron deficiency anemia Nano Lett.19 7816–26
[209] [209] Karshalev E, Esteban-Fernndez De vila B, Beltrn-Gastlum M, Angsantikul P, Tang S S, Mundaca-Uribe R, Zhang F Y, Zhao J, Zhang L F and Wang J 2018 Micromotor pills as a dynamic oral delivery platform ACS Nano12 8397–405
[210] [210] Jang B et al 2016 Catalytic locomotion of core–shell nanowire motors ACS Nano10 9983–91
[211] [211] Li J X et al 2018 Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats Adv. Mater.30 1704800
[212] [212] Dong Y, Wang L, Wang J, Wang S J, Wang Y, Jin D D, Chen P, Du W, Zhang L and Liu B F 2020 Graphene-based helical micromotors constructed by “microscale liquid rope-coil effect” with microfluidics ACS Nano14 16600–13
[213] [213] Dong Y et al 2022 Endoscope-assisted magnetic helical micromachine delivery for biofilm eradication in tympanostomy tube Sci. Adv.8 eabq8573
[214] [214] Ren L Q, Nama N, McNeill J M, Soto F, Yan Z F, Liu W, Wang W, Wang J and Mallouk T E 2019 3D steerable, acoustically powered microswimmers for single-particle manipulation Sci. Adv.5 eaax3084
[215] [215] Aghakhani A, Pena-Francesch A, Bozuyuk U, Cetin H, Wrede P and Sitti M 2022 High shear rate propulsion of acoustic microrobots in complex biological fluids Sci. Adv.8 eabm5126
[216] [216] Cao S P, Wu H L, Pijpers I A B, Shao J X, Abdelmohsen L K E A, Williams D S and Van Hest J C M 2021 Cucurbit-like polymersomes with aggregation-induced emission properties show enzyme-mediated motility ACS Nano15 18270–8
[217] [217] Guo Z Y, Wu Y F, Xie Z Z, Shao J M, Liu J, Yao Y, Wang J, Shen Y S, Gooding J J and Liang K 2022 Self-propelled initiative collision at microelectrodes with vertically mobile micromotors Angew. Chem., Int. Ed.61 e202209747
[218] [218] Esteban-Fernndez De vila B, Angsantikul P, Ramrez-Herrera D E, Soto F, Teymourian H, Dehaini D, Chen Y J, Zhang L F and Wang J 2018 Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins Sci. Robot.3 eaat0485
[219] [219] Zhang F Y et al 2022 Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia Nat. Mater.21 1324–32
[220] [220] Gong D, Celi N, Zhang D Y and Cai J 2022 Magnetic biohybrid microrobot multimers based on Chlorella cells for enhanced targeted drug delivery ACS Appl. Mater. Interfaces14 6320–30
[221] [221] Alapan Y, Yasa O, Schauer O, Giltinan J, Tabak A F, Sourjik V and Sitti M 2018 Soft erythrocyte-based bacterial microswimmers for cargo delivery Sci. Robot.3 eaar4423
[222] [222] Yao K, Manjare M, Barrett C A, Yang B, Salguero T T and Zhao Y P 2012 Nanostructured scrolls from graphene oxide for microjet engines J. Phys. Chem. Lett.3 2204–8
[223] [223] Li J X, Liu Z Q, Huang G S, An Z H, Chen G, Zhang J, Li M L, Liu R and Mei Y F 2014 Hierarchical nanoporous microtubes for high-speed catalytic microengines NPG Asia Mater.6 e94
[224] [224] Zhu J, Wang H G and Zhang Z X 2021 Shape-tunable Janus micromotors via surfactant-induced dewetting Langmuir37 4964–70
[225] [225] Jurado-Snchez B, Pacheco M, Rojo J and Escarpa A 2017 Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection Angew. Chem., Int. Ed.56 6957–61
[226] [226] Wu X F, Ehehalt R, Razinskas G, Feichtner T, Qin J and Hecht B 2022 Light-driven microdrones Nat. Nanotechnol.17 477–84
[227] [227] Li J X, Sattayasamitsathit S, Dong R F, Gao W, Tam R, Feng X M, Ai S and Wang J 2014 Template electrosynthesis of tailored-made helical nanoswimmers Nanoscale6 9415–20
[228] [228] Miskin M Z, Cortese A J, Dorsey K, Esposito E P, Reynolds M F, Liu Q K, Cao M, Muller D A, Mceuen P L and Cohen I 2020 Electronically integrated, mass-manufactured, microscopic robots Nature584 557–61
[229] [229] Michel M, Taylor A, Sekol R, Podsiadlo P, Ho P, Kotov N and Thompson L 2007 High-performance nanostructured membrane electrode assemblies for fuel cells made by layer-by-layer assembly of carbon nanocolloids Adv. Mater.19 3859–64
[230] [230] Hu N, Sun M M, Lin X K, Gao C Y, Zhang B, Zheng C, Xie H and He Q 2018 Self-propelled rolled-up polyelectrolyte multilayer microrockets Adv. Funct. Mater.28 1705684
[231] [231] Yang L S, Meng H F, Chao Y C, Huang H C, Luo C W, Zan H W, Horng S F, Huang H L, Lai C C and Liou Y M 2020 The influence of the interfacial layer on the stability of all-solution-processed organic light-emitting diodes RSC Adv.10 28766–77
[232] [232] Yeh Y W et al 2021 Advanced atomic layer deposition technologies for micro-LEDs and VCSELs Nanoscale Res. Lett.16 164
[233] [233] De vila B E F et al 2017 Micromotor-enabled active drug delivery for in vivo treatment of stomach infection Nat. Commun.8 272
[234] [234] iman 2011 Template-assisted electrochemical synthesis of semiconductor nanowires Nanowires—Implementations and Applications ed A Hashim (InTech) pp 41–58
[235] [235] Garca-Torres J, Serr A, Tierno P, Alcob X and Valls E 2017 Magnetic propulsion of recyclable catalytic nanocleaners for pollutant degradation ACS Appl. Mater. Interfaces9 23859–68
[236] [236] Lim J M, Bertrand N, Valencia P M, Rhee M, Langer R, Jon S, Farokhzad O C and Karnik R 2014 Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study Nanomed. Nanotechnol. Biol. Med.10 401–9
[237] [237] Zou M H, Wang J, Yu Y R, Sun L Y, Wang H, Xu H and Zhao Y J 2018 Composite multifunctional micromotors from droplet microfluidics ACS Appl. Mater. Interfaces10 34618–24
[238] [238] Love J C, Wolfe D B, Jacobs H O and Whitesides G M 2001 Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography Langmuir17 6005–12
[239] [239] Brooks A M, Tasinkevych M, Sabrina S, Velegol D, Sen A and Bishop K J M 2019 Shape-directed rotation of homogeneous micromotors via catalytic self-electrophoresis Nat. Commun.10 495
[240] [240] Go G, Nguyen V D, Jin Z, Park J O and Park S 2018 A thermo-electromagnetically actuated microrobot for the targeted transport of therapeutic agents Int. J. Control Autom. Syst.16 1341–54
[241] [241] Kawata S, Sun H B, Tanaka T and Takada K 2001 Finer features for functional microdevices Nature412 697–8
[242] [242] Tottori S, Zhang L, Qiu F M, Krawczyk K K, Franco-Obregn A and Nelson B J 2012 Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport Adv. Mater.24 811–6
[243] [243] Mohanty S, Paul A, Matos P M, Zhang J N, Sikorski J and Misra S 2022 CeFlowBot: a biomimetic flow-driven microrobot that navigates under magneto-acoustic fields Small18 2105829
[244] [244] Iacovacci V, Blanc A, Huang H W, Ricotti L, Schibli R, Menciassi A, Behe M, Pan S and Nelson B J 2019 High-resolution SPECT imaging of stimuli-responsive soft microrobots Small15 1900709
[245] [245] Kucinski T M, Dawson J N and Freedman M A 2019 Size-dependent liquid–liquid phase separation in atmospherically relevant complex systems J. Phys. Chem. Lett.10 6915–20
[246] [246] Huang X, Liu Y, Feng A, Cheng X, Xiong X Y, Wang Z M, He Z X, Guo J T, Wang S and Yan X B 2022 Photoactivated organic nanomachines for programmable enhancement of antitumor efficacy Small18 2201525
[247] [247] Frank B D, Djalali S, Baryzewska A W, Giusto P, Seeberger P H and Zeininger L 2022 Reversible morphology-resolved chemotactic actuation and motion of Janus emulsion droplets Nat. Commun.13 2562
[248] [248] Kim S H, Mohseni P K, Song Y, Ishihara T and Li X L 2015 Inverse metal-assisted chemical etching produces smooth high aspect ratio InP nanostructures Nano Lett.15 641–8
[249] [249] Liang Z X and Fan D L 2018 Visible light–gated reconfigurable rotary actuation of electric nanomotors Sci. Adv.4 eaau0981
[250] [250] Dai B H, Wang J Z, Xiong Z, Zhan X J, Dai W, Li C C, Feng S P and Tang J Y 2016 Programmable artificial phototactic microswimmer Nat. Nanotechnol.11 1087–92
[251] [251] Borah D, Shaw M T, Rasappa S, Farrell R A, O'mahony C, Faulkner C M, Bosea M, Gleeson P, Holmes J D and Morris M A 2011 Plasma etch technologies for the development of ultra-small feature size transistor devices J. Phys. D: Appl. Phys.44 174012
[252] [252] Bao J J, Yang Z, Nakajima M, Shen Y J, Takeuchi M, Huang Q and Fukuda T 2014 Self-actuating asymmetric platinum catalytic mobile nanorobot IEEE Trans. Robot.30 33–39
[253] [253] Dong Y, Yi C, Yang S S, Wang J, Chen P, Liu X, Du W, Wang S and Liu B F 2019 A substrate-free graphene oxide-based micromotor for rapid adsorption of antibiotics Nanoscale11 4562–70
[254] [254] Wang X Y, Feng X Y, Ma G P, Yao L and Ge M F 2016 Amphiphilic Janus particles generated via a combination of diffusion-induced phase separation and magnetically driven dewetting and their synergistic self-assembly Adv. Mater.28 3131–7
[255] [255] Ren M, Guo W L, Guo H S and Ren X H 2019 Microfluidic fabrication of bubble-propelled micromotors for wastewater treatment ACS Appl. Mater. Interfaces11 22761–7
[256] [256] Hussain M et al 2019 Biodegradable polymer microparticles with tunable shapes and surface textures for enhancement of dendritic cell maturation ACS Appl. Mater. Interfaces11 42734–43
[257] [257] Vilela D, Stanton M M, Parmar J and Snchez S 2017 Microbots decorated with silver nanoparticles kill bacteria in aqueous media ACS Appl. Mater. Interfaces9 22093–100
[258] [258] Zhou J R et al 2021 Physical disruption of solid tumors by immunostimulatory microrobots enhances antitumor immunity Adv. Mater.33 2103505
[259] [259] Li J X, Singh V V, Sattayasamitsathit S, Orozco J, Kaufmann K, Dong R F, Gao W, Jurado-Sanchez B, Fedorak Y and Wang J 2014 Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents ACS Nano8 11118–25
[260] [260] Venugopalan P L, Sai R, Chandorkar Y, Basu B, Shivashankar S and Ghosh A 2014 Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood Nano Lett.14 1968–75
[261] [261] Cao W X, Liu Y, Ran P, He J, Xie S, Weng J and Li X H 2021 Ultrasound-propelled Janus rod-shaped micromotors for site-specific sonodynamic thrombolysis ACS Appl. Mater. Interfaces13 58411–21
[262] [262] Yoshizumi Y and Suzuki H 2017 Self-propelled metal–polymer hybrid micromachines with bending and rotational motions ACS Appl. Mater. Interfaces9 21355–61
[263] [263] Fusco S et al 2015 Shape-switching microrobots for medical applications: the influence of shape in drug delivery and locomotion ACS Appl. Mater. Interfaces7 6803–11
[264] [264] Wang H, Chen X R, Meng X, He Y S, Jin B W, Zhao X L and Ye C H 2024 Soft micromotors with switchable motion enabled by 3D-to-3D shape reconfiguration Chem. Mater.36 4174–84
[265] [265] Baptista-Pires L, Orozco J, Guardia P and Merkoi A 2018 Architecting graphene oxide rolled-up micromotors: a simple paper-based manufacturing technology Small14 1702746
[266] [266] Solovev A A, Mei Y F, Bermdez Urea E, Huang G S and Schmidt O G 2009 Catalytic microtubular jet engines self-propelled by accumulated gas bubbles Small5 1688–92
[267] [267] Xu B R, Zhang X Y, Tian Z A, Han D, Fan X C, Chen Y M, Di Z F, Qiu T and Mei Y F 2019 Microdroplet-guided intercalation and deterministic delamination towards intelligent rolling origami Nat. Commun.10 5019
[268] [268] Wu Z G, Lin X K, Wu Y J, Si T Y, Sun J M and He Q 2014 Near-infrared light-triggered “on/off” motion of polymer multilayer rockets ACS Nano8 6097–105
[269] [269] Dong R F, Wang C, Wang Q L, Pei A, She X L, Zhang Y X and Cai Y P 2017 ZnO-based microrockets with light-enhanced propulsion Nanoscale9 15027–32
[270] [270] Gao W, Feng X M, Pei A, Kane C R, Tam R, Hennessy C and Wang J 2014 Bioinspired helical microswimmers based on vascular plants Nano Lett.14 305–10
[271] [271] Li Z Q et al 2024 Multifunctional Spirulina-hybrid helical microswimmers: imaging and photothermal efficacy enabled by intracellular gold deposition Chem. Eng. J.487 150584
[272] [272] Yan X H et al 2015 Magnetite nanostructured porous hollow helical microswimmers for targeted delivery Adv. Funct. Mater.25 5333–42
[273] [273] Ceylan H, Dogan N O, Yasa I C, Musaoglu M N, Kulali Z U and Sitti M 2021 3D printed personalized magnetic micromachines from patient blood–derived biomaterials Sci. Adv.7 eabh0273
[274] [274] Walker D, Ksdorf B T, Jeong H H, Lieleg O and Fischer P 2015 Enzymatically active biomimetic micropropellers for the penetration of mucin gels Sci. Adv.1 e1500501
[275] [275] Ghosh A, Dasgupta D, Pal M, Morozov K I, Leshansky A M and Ghosh A 2018 Helical nanomachines as mobile viscometers Adv. Funct. Mater.28 1705687
[276] [276] Yu Y R, Shang L R, Gao W, Zhao Z, Wang H and Zhao Y J 2017 Microfluidic lithography of bioinspired helical micromotors Angew. Chem.129 12295–9
[277] [277] Jeon S et al 2019 Magnetically actuated microrobots as a platform for stem cell transplantation Sci. Robot.4 eaav4317
[278] [278] Li D F, Liu C, Yang Y Y, Wang L D and Shen Y J 2020 Micro-rocket robot with all-optic actuating and tracking in blood Light Sci. Appl.9 84
[279] [279] Li D F, Liu Y T, Yang Y Y and Shen Y J 2018 A fast and powerful swimming microrobot with a serrated tail enhanced propulsion interface Nanoscale10 19673–7
[280] [280] Sun M M, Liu Q, Fan X J, Wang Y F, Chen W N, Tian C Y, Sun L N and Xie H 2020 Autonomous biohybrid urchin-like microperforator for intracellular payload delivery Small16 1906701
[281] [281] Dong Y, Wang L, Yuan K, Ji F T, Gao J H, Zhang Z F, Du X Z, Tian Y, Wang Q Q and Zhang L 2021 Magnetic microswarm composed of porous nanocatalysts for targeted elimination of biofilm occlusion ACS Nano15 5056–67
[282] [282] Kiristi M, Singh V V, Esteban-fernndez De vila B, Uygun M, Soto F, Akta Uygun D and Wang J 2015 Lysozyme-based antibacterial nanomotors ACS Nano9 9252–9
[283] [283] Chen W N, Sun M M, Fan X J and Xie H 2020 Magnetic/pH-sensitive double-layer microrobots for drug delivery and sustained release Appl. Mater. Today19 100583
[284] [284] Zhang H, Mourran A and Mller M 2017 Dynamic switching of helical microgel ribbons Nano Lett.17 2010–4
[285] [285] Luchnikov V, Kumar K and Stamm M 2008 Toroidal hollow-core microcavities produced by self-rolling of strained polymer bilayer films J. Micromech. Microeng.18 035041
[286] [286] Hahn V, Rietz P, Hermann F, Mller P, Barner-Kowollik C, Schlder T, Wenzel W, Blasco E and Wegener M 2022 Light-sheet 3D microprinting via two-colour two-step absorption Nat. Photon.16 784–91
[287] [287] Fan Z Y, Gao R X, He Q B, Huang Y, Jiang T X, Peng Z K, Thvenaz L, Xiong Y Y and Zhong S C JDMD Editorial Office 2023 New sensing technologies for monitoring machinery, structures, and manufacturing processes J. Dyn. Monit. Diagn2 69–88
[288] [288] Mekid S and Bashmal S 2019 Engineering manipulation at nanoscale: further functional specifications J. Eng. Des. Technol.17 572–90
[289] [289] Gong Z, Chen B K, Liu J and Sun Y 2014 Robotic probing of nanostructures inside scanning electron microscopy IEEE Trans. Robot.30 758–65
[290] [290] Shi C Y, Luu D K, Yang Q M, Liu J, Chen J, Ru C H, Xie S R, Luo J, Ge J and Sun Y 2016 Recent advances in nanorobotic manipulation inside scanning electron microscopes Microsyst. Nanoeng.2 16024
[291] [291] Shang W F, Zhu M J, Ren H and Wu X Y 2020 Centering of a miniature rotation robot for multi-directional imaging under microscopy IEEE Trans. Nanotechnol.19 17–20
[292] [292] Jin Z Q, Zhang Z Z and Gu G X 2019 Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning Manuf. Lett.22 11–15
[293] [293] Yang L D, Jiang J L, Ji F T, Li Y M, Yung K L, Ferreira A and Zhang L 2024 Machine learning for micro- and nanorobots Nat. Mach. Intell.6 605–18
Get Citation
Copy Citation Text
Liu Junmin, Zhuang Rencheng, Zhou Dekai, Chang Xiaocong, Li Longqiu. Design and manufacturing of micro/nanorobots[J]. International Journal of Extreme Manufacturing, 2024, 6(6): 62006
Category: Topical Review
Received: May. 15, 2024
Accepted: Feb. 13, 2025
Published Online: Feb. 13, 2025
The Author Email: