Acta Optica Sinica, Volume. 42, Issue 23, 2334003(2022)

Optimal Compound Multi-Segment Cooling Method for High-Heat-Load X-Ray Mirrors

Zhen Wang1, Yajun Tong1, Xiaohao Dong2, and Fang Liu1、*
Author Affiliations
  • 1Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
  • 2Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
  • show less
    Figures & Tables(16)
    Layout of FEL-I beamline in SHINE
    Absorbed power density distribution of M1 at energy of 7.0 keV with grazing angle of 1.9 mrad. (a) Spontaneous radiation; (b) FEL fundamental radiation; (c) third harmonic radiation; (d) total power
    Heat load distribution at each characteristic energy point in M1. (a) Meridian direction of reflector;(b) sagittal direction of reflector
    Mirror cooling model and FEA model. (a) Mirror cooling structure; (b) enlarged view of mirror cooling structure; (c) FEA model of mirror cooling structure; (d) enlarged view of FEA model of mirror cooling structure
    Temperature distribution after ray with energy of 7.0 keV incident on M1 mirror at grazing angle of 1.9 mrad
    Thermal deformation of M1 mirror in meridian direction at each characteristic energy point
    Thermal deformation after X-ray with energy of 7.0 keV incident on M1 mirror at grazing angle of 4.0 mrad under different cooling fin lengths
    Residual height error after X-ray with energy of 7.0 keV incident on M1 mirror at grazing angle of 4.0 mrad under different cooling fin lengths
    Schematic diagram of multi-stage compound cooling structure
    • Table 1. Parameters for accelerator used in simultaneous radiation simulation

      View table

      Table 1. Parameters for accelerator used in simultaneous radiation simulation

      DeviceParameterValue
      Electron beamElectron energy /Gev8
      Bunch charge /pC100
      Average current /mA0.1
      Peak current /A1000
      Pulse duration /fs100
      Emittance /(μm·rad)0.4
      Repetition rate /MHz1
      UndulatorPeak magnetic field /T1
      Period /mm26
      Undulator length /m4
      Number of segments42
      Distance between segments /m1
    • Table 2. Light source parameters under different photon energies

      View table

      Table 2. Light source parameters under different photon energies

      Photon energy /keV3.07.012.415.0
      Bunch charge /pC100100100100
      Electron energy /GeV5888
      Pulse energy /μJ930180039460
      Source size(FWHM)/μm49485050
      Source divergence(FWHM)/μrad5.52.71.71.3
    • Table 3. Material parameters in FEA

      View table

      Table 3. Material parameters in FEA

      MaterialDensity /(kg·m-3Elastic modulus /GPaYield stress /MPaPoisson ratioThermal conductivity /(W·m-1·K-1Thermal expansion coefficient at temperature of 300 K /(10-6 K-1
      Silicon2329112.41200.281482.50
      Copper8900110.02200.343911.75
      In/Ga635028
    • Table 4. SR of M1 mirror under different energies

      View table

      Table 4. SR of M1 mirror under different energies

      Energy /keV

      Grazing

      angle /mrad

      Total heat /WSimulated SR
      3.04.018.900.17
      5.04.028.600.12
      7.04.038.200.15
      1.937.100.16
      12.41.99.230.29
      15.01.91.720.70
    • Table 5. Optimum cooling fin lengths under different energies

      View table

      Table 5. Optimum cooling fin lengths under different energies

      Energy /keVGrazing angle /mradOptimum cooling fin length /mm
      3.04.0156
      5.04.0109
      7.04.053
      1.9148
      12.41.964
      15.01.965
    • Table 6. SR under different energies after comprehensive optimization

      View table

      Table 6. SR under different energies after comprehensive optimization

      Energy /keVGrazing angle /mradTotal heat /WSimulated SR
      3.04.018.900.30
      5.04.028.600.26
      7.04.038.200.35
      1.937.100.27
      12.41.99.230.60
      15.01.91.720.93
    • Table 7. Nominal heat load and working repetition rate before and after optimization at SR=0.96

      View table

      Table 7. Nominal heat load and working repetition rate before and after optimization at SR=0.96

      Energy /keVGrazing angle /mradBefore OptimizationAfter OptimizationRepetition rate ratio
      Total heat /WRepetition rate /kHzTotal heat /WRepetition rate /kHz
      3.04.00.6333.31.891003.0
      5.04.00.5720.01.57552.8
      7.04.00.4812.53.06806.4
      1.90.6216.71.86503.0
      12.41.90.3740.03.073338.3
      15.01.90.43250.00.865002.0
    Tools

    Get Citation

    Copy Citation Text

    Zhen Wang, Yajun Tong, Xiaohao Dong, Fang Liu. Optimal Compound Multi-Segment Cooling Method for High-Heat-Load X-Ray Mirrors[J]. Acta Optica Sinica, 2022, 42(23): 2334003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: X-Ray Optics

    Received: May. 5, 2022

    Accepted: Jun. 16, 2022

    Published Online: Dec. 14, 2022

    The Author Email: Liu Fang (liufang@shanghaitech.edu.cn)

    DOI:10.3788/AOS202242.2334003

    Topics