Infrared and Laser Engineering, Volume. 52, Issue 3, 20220507(2023)

Method and experiment of laser detection and tracking of ship wake

Siguang Zong, Xin Zhang, Jing Cao, Shanyong Liang, and Bin Li
Author Affiliations
  • College of Electronic Engineering, Naval University of Engineering, Wuhan 430034, China
  • show less
    Figures & Tables(16)
    Distribution characteristics of ship wake. (a) Top view; (b) Transverse section; (c) Lateral profile
    Program diagram of photon simulated motion
    Possible forms of detection. (a) Detection in wake; (b) Detection under wake
    Signal change trend. (a) Under the wake; (b) In wake
    Signal change trend. (a) Under the wake; (b) In wake
    Signal change trend. (a) Under the wake; (b) In wake
    Signal change trend. (a) Under the wake; (b) In wake
    Experimental system and process. (a) Detection system; (b) Experimental ship; (c) Detection system; (d) Lake test tracking pro-cess; (e) Schematic diagram of tracking process
    Water background laser scattering signal and bubble laser scattering echo signal. (a) Original signal; (b) Smoothed signal
    Water background laser scattering signal and bubble laser scattering echo signal. (a) Original signal; (b) Smoothed signal
    Water background laser scattering signal and bubble laser scattering echo signal. (a) Original signal; (b) Smoothed signal
    Water background laser scattering signal and bubble laser scattering echo signal. (a) Original signal; (b) Smoothed signal
    • Table 1. Wake distribution of common ships[11]

      View table
      View in Article

      Table 1. Wake distribution of common ships[11]

      Destroyer model Speed/knThickness at 360 m/m Width/mDraft
      Rathborn10-126.5±1.1--
      Hopewell107.7±1.2125.8
      Evian134.4±1.17.52.9
    • Table 2. Measured bubble distribution density in ship wake[16]

      View table
      View in Article

      Table 2. Measured bubble distribution density in ship wake[16]

      Bubble radius/μm 1 min/m−33 min/m−35 min/m−3
      10704.9×1024.1×101-
      4001.79×1045.6×1037.8×102
      1604.6×1051.98×1059.3×104
      805.5×1062.61×1061.45×106
      10-10702.83×1081.32×1087.16×107
    • Table 3. Simulation conditions for large vessel

      View table
      View in Article

      Table 3. Simulation conditions for large vessel

      Simulation conditions Zone 1Zone 2Zone 3Zone 4Zone 5Zone 6Zone 7Zone 8
      Movement mode In/under wake In/under wake In/under wake In/under wake In/under wake In/under wake In/under wake In/under wake
      Bubble size/μm20-8080-140140-200200-260260-320320-380380-440440-500
      Bubble thickness/m2-33-44-55-66-77-88-99
      Bubble density/m−3105-106106-3×1063×106-6×1066×106-107107-108108-2×1082×108-3×1083×108
    • Table 4. Small vessel simulation condition settings

      View table
      View in Article

      Table 4. Small vessel simulation condition settings

      Simulation conditions Zone 1Zone 2Zone 3Zone 4
      Movement mode In/under wake In/under wake In/under wake In/under wake
      Bubble size/μm20-6060-100100-300300-500
      Bubble thickness/m 0-11-22-33-4
      Bubble density/m−3104-105105-106106-107107
    Tools

    Get Citation

    Copy Citation Text

    Siguang Zong, Xin Zhang, Jing Cao, Shanyong Liang, Bin Li. Method and experiment of laser detection and tracking of ship wake[J]. Infrared and Laser Engineering, 2023, 52(3): 20220507

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Jul. 21, 2022

    Accepted: --

    Published Online: Apr. 12, 2023

    The Author Email:

    DOI:10.3788/IRLA20220507

    Topics