Journal of the Chinese Ceramic Society, Volume. 52, Issue 11, 3394(2024)
Cracking Mechanism of Bridge Piers Concrete Under Large Temperature Variation in Plateau Region
[7] [7] HAN S. Assessment of curing schemes for effectively controlling thermal behavior of mass concrete foundation at early ages[J]. Constr Build Mater, 2020, 230: 117004.
[8] [8] SAEED M K, RAHMAN M K, BALUCH M H. Early age thermal cracking of mass concrete blocks with Portland cement and ground granulated blast-furnace slag[J]. Mag Concr Res, 2016, 68(13): 647–663.
[9] [9] KLEMCZAK B, BATOG M, GIERGICZNY Z, et al. Complex effect of concrete composition on the thermo-mechanical behaviour of mass concrete[J]. Materials, 2018, 11(11): 2207.
[10] [10] BOURCHY A, BARNES L, BESSETTE L, et al. Optimization of concrete mix design to account for strength and hydration heat in massive concrete structures[J]. Cem Concr Compos, 2019, 103: 233–241.
[11] [11] LU X C, CHEN B F, TIAN B, et al. A new method for hydraulic mass concrete temperature control: Design and experiment[J]. Constr Build Mater, 2021, 302: 124167.
[12] [12] HU Y H, CHEN J, ZOU F, et al. A comparative study of temperature of mass concrete placed in August and November based on on-site measurement[J]. Case Stud Constr Mater, 2021, 15: e00694.
[13] [13] CAO F J, FANG G H, MA X G, et al. Simulation analysis of crack cause of concrete overflow dam for Hadashan Hydro Project by 3-D FEM[J]. Syst Eng Procedia, 2012, 3: 48–54.
[14] [14] HAMDERI M, GULER E, RAOUF A. An investigation on the formation of cracks at the corner turns of the modular block earth walls[J]. Int J Civ Eng, 2019, 17(2): 219–230.
[15] [15] WU S X, HUANG D H, LIN F B, et al. Estimation of cracking risk of concrete at early age based on thermal stress analysis[J]. J Therm Anal Calorim, 2011, 105(1): 171–186.
[16] [16] KWAK H G, HA S J, KIM J K. Non-structural cracking in RC walls[J]. Cem Concr Res, 2006, 36(4): 749–760.
[17] [17] LI X D, YU Z P, CHEN K X, et al. Investigation of temperature development and cracking control strategies of mass concrete: A field monitoring case study[J]. Case Stud Constr Mater, 2023, 18: e02144.
[18] [18] LI Y, NIE L, WANG B. A numerical simulation of the temperature cracking propagation process when pouring mass concrete[J]. Autom Constr, 2014, 37: 203–210.
[19] [19] SHENG X W, XIAO S M, ZHENG W Q, et al. Experimental and finite element investigations on hydration heat and early cracks in massive concrete piers[J]. Case Stud Constr Mater, 2023, 18: e01926.
[20] [20] WANG N, LUO K, PENG K, et al. Thermal deformation and microstructure characteristics of low-heat Portland cement-based concrete in a high plateau environment[J]. J Build Eng, 2022, 58: 105025.
[26] [26] ZHANG Q L, WANG F, GAN X Q, et al. A field investigation into penetration cracks close to dam-to-pier interfaces and numerical analysis[J]. Eng Fail Anal, 2015, 57: 188–201.
[27] [27] LIU Y F, NIE X, FAN J S, et al. Image-based crack assessment of bridge piers using unmanned aerial vehicles and three-dimensional scene reconstruction[J]. Computer Aided Civil Eng, 2020, 35(5): 511–529.
[28] [28] REGGIA A, SGOBBA S, MACOBATTI F, et al. Strengthening of a bridge pier with HPC: Modeling of restrained shrinkage cracking[J]. Key Eng Mater, 2016, 711: 1027–1034.
[29] [29] JANG K, AN Y K, KIM B, et al. Automated crack evaluation of a high-rise bridge pier using a ring-type climbing robot[J]. Computer Aided Civ Eng, 2021, 36(1): 14–29.
[31] [31] LI X F, FU Z, LUO Z. Effect of atmospheric pressure on air content and air void parameters of concrete[J]. Mag Concr Res, 2015, 67(8): 391–400.
[39] [39] DUFFIE DECEASED J A, BECKMAN W A, BLAIR N. Solar engineering of thermal processes, photovoltaics and wind[M]. America: Wiley, 2020.
[40] [40] SAETTA A, SCOTTA R, VITALIANI R. Stress analysis of concrete structures subjected to variable thermal loads[J]. J Struct Eng, 1995, 121(3): 446–457.
[42] [42] ELBADRY M M, GHALI A. Temperature variations in concrete bridges[J]. J Struct Eng, 1983, 109(10): 2355–2374.
[44] [44] NISHIZAWA T, OZEKI T, KATOH K, et al. Finite element model analysis of thermal stresses of thick airport concrete pavement slabs[J]. Transportation Research Record, 2009, 2095(1): 3–12.
[50] [50] ALLICHE A. Damage model for fatigue loading of concrete[J]. Int J Fatigue, 2004, 26(9): 915–921.
[53] [53] ONESCHKOW N. Fatigue behaviour of high-strength concrete with respect to strain and stiffness[J]. Int J Fatigue, 2016, 87: 38–49.
[54] [54] LI Z L, SHANG H B, XIAO S P, et al. Effect of thermal fatigue on mechanical properties and microstructure of concrete in constant ambient humidity[J]. Constr Build Mater, 2023, 368: 130367.
Get Citation
Copy Citation Text
DONG Haoliang, LI Huajian, SHI Henan, YANG Zhiqiang, WEN Jiaxin, HUANG Fali, WANG Zhen, YI Zhonglai. Cracking Mechanism of Bridge Piers Concrete Under Large Temperature Variation in Plateau Region[J]. Journal of the Chinese Ceramic Society, 2024, 52(11): 3394
Category:
Received: Apr. 19, 2024
Accepted: Dec. 13, 2024
Published Online: Dec. 13, 2024
The Author Email: Huajian LI (chinasailor@163.com)