Journal of the Chinese Ceramic Society, Volume. 52, Issue 2, 681(2024)

Progress on Promoting Wound Healing with Boric Acid/Borosilicate Bioactive Glass

LIU Chunyu1... WANG Xue2, SHU Dan1,3, LI Shuaijie1, ZHNAG Liyan1, CUI Xu1, LI Honglong1,2, and PAN Haobo12,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(81)

    [1] [1] WANG P H, HUANG B S, HORNG H C, et al. Wound healing[J]. J Chin Med Assoc, 2018, 81(2): 94-101.

    [2] [2] Chronic Wounds: A Growing Problem. https://www.missionrmc.org/ services/the-wound-healing-center/chronic-wounds-a-growing-problem/.

    [3] [3] The National Health and Family Planning Commission. Report on Nutrition and Chronic Disease Status of Chinese Residents 2015 [R]. 2015.

    [4] [4] Chinese Diabetes Society. Clinical guidelines for prevention and treatment of type 2 diabetes mellitus in the elderly in China[J]. Nat Library Med, 2022, 61(1): 12-50.

    [5] [5] FU Xiaobing. Infection Inflammation Repair, 2019, 20(1): 23-26.

    [6] [6] MEHRABI T, MESGAR A S, MOHAMMADI Z. Bioactive glasses: a promising therapeutic ion release strategy for enhancing wound healing[J]. ACS Biomater Sci Eng, 2020, 6(10): 5399-5430.

    [7] [7] BAINO F, HAMZEHLOU S, KARGOZAR S. Bioactive glasses: where are we and where are we going?[J]. J Funct Biomater, 2018, 9(1): 25.

    [8] [8] MONTAZERIAN M, ZANOTTO E D. A guided walk through Larry Hench’s monumental discoveries[J]. J Mater Sci, 2017, 52(15): 8695-8732.

    [9] [9] BALASUBRAMANIAN P, BüTTNER T, MIGUEZ PACHECO V, et al. Boron-containing bioactive glasses in bone and soft tissue engineering[J]. J Eur Ceram Soc, 2018, 38(3): 855-869.

    [10] [10] PANG L B, TIAN P F, CUI X, et al. In situ photo-cross-linking hydrogel accelerates diabetic wound healing through restored hypoxia-inducible factor 1-alpha pathway and regulated inflammation[J]. ACS Appl Mater Interfaces, 2021, 13(25): 29363-29379.

    [11] [11] STONE-WEISS N, BRADTMüLLER H, ECKERT H, et al. Composition-structure-solubility relationships in borosilicate glasses: toward a rational design of bioactive glasses with controlled dissolution behavior[J]. ACS Appl Mater Interfaces, 2021, 13(27): 31495-31513.

    [12] [12] LIU W L, DAN X L, LU W W, et al. Spatial distribution of biomaterial microenvironment pH and its modulatory effect on osteoclasts at the early stage of bone defect regeneration[J]. ACS Appl Mater Interfaces, 2019, 11(9): 9557-9572.

    [13] [13] PANG L B, ZHAO R L, CHEN J, et al. Osteogenic and anti-tumor Cu and Mn-doped borosilicate nanoparticles for syncretic bone repair and chemodynamic therapy in bone tumor treatment[J]. Bioact Mater, 2021, 12: 1-15.

    [14] [14] KARGOZAR S, SINGH R K, KIM H W, et al. “Hard” ceramics for “Soft” tissue engineering: paradox or opportunity?[J]. Acta Biomater, 2020, 115: 1-28.

    [15] [15] NASERI S, LEPRY W C, NAZHAT S N. Bioactive glasses in wound healing: hope or hype?[J]. J Mater Chem B, 2017, 5(31): 6167-6174.

    [16] [16] BORDA L J, MACQUHAE F E, KIRSNER R S. Wound dressings: a comprehensive review[J]. Curr Dermatol Rep, 2016, 5(4): 287-297.

    [17] [17] WILKINSON H N, HARDMAN M J. Wound healing: cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10(9): 200223.

    [18] [18] DI Tietao, ZHANG Chunling, CHEN Lu, et al. J Guiyang Univ Chin Med, 2017, 39(1): 98-101.

    [19] [19] SCHILRREFF P, ALEXIEV U. Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment[J]. Int J Mol Sci, 2022, 23(9): 4928.

    [20] [20] BERMUDEZ D M, HERDRICH B J, XU J W, et al. Impaired biomechanical properties of diabetic skin implications in pathogenesis of diabetic wound complications[J]. Am J Pathol, 2011, 178(5): 2215-2223.

    [21] [21] NELSON G, KUCHERYAVENKO O, WORDSWORTH J, et al. The senescent bystander effect is caused by ROS-activated NF-κB signalling[J]. Mech Ageing Dev, 2018, 170: 30-36.

    [22] [22] LIU Y F, NI P W, HUANG Y, et al. Therapeutic strategies for chronic wound infection[J]. Chin J Traumatol, 2022, 25(1): 11-16.

    [23] [23] RAZIYEVA K, KIM Y, ZHARKINBEKOV Z, et al. Immunology of acute and chronic wound healing[J]. Biomolecules, 2021, 11(5): 700.

    [24] [24] JONES J R, BRAUER D S, HUPA leena, et al. Bioglass and bioactive glasses and their impact on healthcare[J]. Int J Appl Glass Sci, 2016, 7(4): 423-434.

    [25] [25] BRAUER D S, M?NCKE D. Chapter 3. introduction to the structure of silicate, phosphate and borate glasses[M]//Bioactive Glasses. Cambridge: Royal Society of Chemistry, 2016: 61-88.

    [26] [26] VALLET-REGI M, SALINAS A J. Role of the short distance order in glass reactivity[J]. Materials, 2018, 11(3): 415.

    [27] [27] SCHUHLADEN K, WANG X J, HUPA L, et al. Dissolution of borate and borosilicate bioactive glasses and the influence of ion (Zn, Cu) doping in different solutions[J]. J Non Cryst Solids, 2018, 502: 22-34.

    [28] [28] FERNANDES H R, GADDAM A, REBELO A, et al. Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering[J]. Materials, 2018, 11(12): 2530.

    [29] [29] EGE D, ZHENG K, BOCCACCINI A R. Borate bioactive glasses (BBG): bone regeneration, wound healing applications, and future directions[J]. ACS Appl Bio Mater, 2022, 5(8): 3608-3622.

    [30] [30] LIU X, RAHAMAN M N, DAY D E. Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid[J]. J Mater Sci Mater Med, 2013, 24(3): 583-595.

    [31] [31] LEPRY W C, NAZHAT S N. Highly bioactive sol-gel-derived borate glasses[J]. Chem Mater, 2015, 27(13): 4821-4831.

    [32] [32] LEPRY W C, SMITH S, NAZHAT S N. Effect of sodium on bioactive sol-gel-derived borate glasses[J]. J Non Cryst Solids, 2018, 500: 141-148.

    [33] [33] DA SILVA L C A, NETO F G, PIMENTEL S S C, et al. The role of Ag2O on antibacterial and bioactive properties of borate glasses[J]. J Non Cryst Solids, 2021, 554: 120611.

    [34] [34] FAN C, XU Q, HAO R Q, et al. Multi-functional wound dressings based on silicate bioactive materials[J]. Biomaterials, 2022, 287: 121652.

    [35] [35] RAHIMNEJAD YAZDI A, TORKAN L, STONE W, et al. The impact of gallium content on degradation, bioactivity, and antibacterial potency of zinc borate bioactive glass[J]. J Biomed Mater Res B Appl Biomater, 2018, 106(1): 367-376.

    [36] [36] DELIORMANL? A M. Sol-gel synthesis of borate-based 13-93B3 bioactive glass powders for biomedical applications[J]. Mater Technol, 2022, 37(11): 1808-1817.

    [37] [37] LEPRY W C, NAZHAT S N. The anomaly in bioactive sol-gel borate glasses[J]. Mater Adv, 2020, 1(5): 1371-1381.

    [38] [38] WANG Y D, PAN H B, CHEN X F. The preparation of hollow mesoporous bioglass nanoparticles with excellent drug delivery capacity for bone tissue regeneration[J]. Front Chem, 2019, 7: 283.

    [39] [39] SHAFAGHI R, RODRIGUEZ O, WREN A W, et al. In vitro evaluation of novel titania-containing borate bioactive glass scaffolds[J]. J Biomed Mater Res A, 2021, 109(2): 146-158.

    [40] [40] CHO J S, KANG Y C. Synthesis of spherical shape borate-based bioactive glass powders prepared by ultrasonic spray pyrolysis[J]. Ceram Int, 2009, 35(6): 2103-2109.

    [41] [41] HENCH L L, SPLINTER R J, ALLEN W C, et al. Bonding mechanisms at the interface of ceramic prosthetic materials[J]. J Biomed Mater Res, 1971, 5(6): 117-141.

    [42] [42] HOPPE A, MOURI?O V, BOCCACCINI A R. Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond[J]. Biomater Sci, 2013, 1(3): 254-256.

    [43] [43] HUANG W H, DAY D E, KITTIRATANAPIBOON K, et al. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions[J]. J Mater Sci Mater Med, 2006, 17(7): 583-596.

    [44] [44] ABODUNRIN O D, EL MABROUK K, BRICHA M. A review on borate bioactive glasses (BBG): effect of doping elements, degradation, and applications[J]. J Mater Chem B, 2023, 11(5): 955-973.

    [45] [45] CHEN R G, LI Q, ZHANG Q, et al. Nanosized HCA-coated borate bioactive glass with improved wound healing effects on rodent model[J]. Chem Eng J, 2021, 426: 130299.

    [46] [46] PRAMANIK C, WANG T D, GHOSHAL S, et al. Microfibrous borate bioactive glass dressing sequesters bone-bound bisphosphonate in the presence of simulated body fluid[J]. J Mater Chem B, 2015, 3(6): 959-963.

    [47] [47] LIU X, XIE Z P, ZHANG C Q, et al. Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection[J]. J Mater Sci Mater Med, 2010, 21(2): 575-582.

    [48] [48] HOPPE A, BRANDL A, BLEIZIFFER O, et al. In vitro cell response to Co-containing 1393 bioactive glass[J]. Mater Sci Eng C, 2015, 57: 157-163.

    [49] [49] PIZZORNO L. Nothing boring about boron[J]. Integr Med (Encinitas). 2015, 14(4): 35-48.

    [50] [50] BROWN R F, RAHAMAN M N, DWILEWICZ A B, et al. Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells[J]. J Biomed Mater Res, 2009, 88A(2): 392-400.

    [51] [51] RAHAMAN M N, DAY D E, BAL B S, et al. Bioactive glass in tissue engineering[J]. Acta Biomater, 2011, 7(6): 2355-2373.

    [52] [52] MODGLIN V C, BROWN R F, JUNG S B, et al. Cytotoxicity assessment of modified bioactive glasses with MLO-A5 osteogenic cells in vitro[J]. J Mater Sci Mater Med, 2013, 24(5): 1191-1199.

    [53] [53] LIU X, HUANG W H, FU H L, et al. Bioactive borosilicate glass scaffolds: in vitro degradation and bioactivity behaviors[J]. J Mater Sci Mater Med, 2009, 20(6): 1237-1243.

    [54] [54] ZHANG X, JIA W T, GU Y F, et al. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model[J]. Biomaterials, 2010, 31(22): 5865-5874.

    [55] [55] JUNG S B, DAY D, BROWN R F R, et al. Potential toxicity of bioactive borate glasses In‐vitro and In-vivo[J]. Adv Biocera Porous Ceram V, 2012: 65-74.

    [56] [56] BUCK D W. Innovative bioactive glass fiber technology accelerates wound healing and minimizes costs: a case series[J]. Adv Skin Wound Care, 2020, 33(8): 1-6.

    [57] [57] ETS Wound Care Home Page. http://www.etissuesolutions.com 2020, 8, 3.

    [58] [58] ARMSTRONG D G, ORGILL D P, GALIANO R D, et al. A multi-centre, single-blinded randomised controlled clinical trial evaluating the effect of resorbable glass fibre matrix in the treatment of diabetic foot ulcers[J]. Int Wound J, 2022, 19(4): 791-801.

    [59] [59] NAZARNEZHAD S, BAINO F, KIM H W, et al. Electrospun nanofibers for improved angiogenesis: promises for tissue engineering applications[J]. Nanomaterials, 2020, 10(8): 1609.

    [60] [60] ZEIMARAN E, POURSHAHRESTANI S, FATHI A, et al. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration[J]. Acta Biomater, 2021, 136: 1-36.

    [61] [61] ZHAO S C, LI L, WANG H, et al. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model[J]. Biomaterials, 2015, 53: 379-391.

    [62] [62] HU H R, TANG Y, PANG L B, et al. Angiogenesis and full-thickness wound healing efficiency of a copper-doped borate bioactive glass/poly(lactic- co-glycolic acid) dressing loaded with vitamin E in vivo and in vitro[J]. ACS Appl Mater Interfaces, 2018, 10(27): 22939-22950.

    [63] [63] NASERI S, LEPRY W C, MAISURIA V B, et al. Development and characterization of silver-doped sol-gel-derived borate glasses with anti-bacterial activity[J]. J Non Cryst Solids, 2019, 505: 438-446.

    [64] [64] DELIORMANL? A M, SEDA VATANSEVER H, YESIL H, et al. In vivo evaluation of cerium, gallium and vanadium-doped borate-based bioactive glass scaffolds using rat subcutaneous implantation model[J]. Ceram Int, 2016, 42(10): 11574-11583.

    [65] [65] SCHUHLADEN K, RAGHU S N V, LIVERANI L, et al. Production of a novel poly(?-caprolactone)-methylcellulose electrospun wound dressing by incorporating bioactive glass and Manuka honey[J]. J Biomed Mater Res, 2021, 109(2): 180-192.

    [66] [66] TANG Y, PANG L B, WANG D P. Preparation and characterization of borate bioactive glass cross-linked PVA hydrogel[J]. J Non Cryst Solids, 2017, 476: 25-29.

    [67] [67] ZHAI X Y, RUAN C S, MA Y F, et al. 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo[J]. Adv Sci, 2017, 5(3): 1700550.

    [68] [68] CUI X, HUANG C C, CHEN Z Z, et al. Hyaluronic acid facilitates bone repair effects of calcium phosphate cement by accelerating osteogenic expression[J]. Bioact Mater, 2021, 6(11): 3801-3811.

    [69] [69] CHEN Q C, WU J, LIU Y, et al. Electrospun chitosan/PVA/bioglass Nanofibrous membrane with spatially designed structure for accelerating chronic wound healing[J]. Mater Sci Eng C Mater Biol Appl, 2019, 105: 110083.

    [70] [70] ZHENG Z Q, BIAN S Q, LI Z Q, et al. Catechol modified quaternized chitosan enhanced wet adhesive and antibacterial properties of injectable thermo-sensitive hydrogel for wound healing[J]. Carbohydr Polym, 2020, 249: 116826.

    [71] [71] SCHUHLADEN K, BEDNARZIG V, REMBOLD N, et al. The effect of borate bioactive glass on the printability of methylcellulose-manuka honey hydrogels[J]. J Mater Res, 2021, 36(19): 3843-3850.

    [72] [72] CHITTURI R, BADDAM V R, PRASAD L, et al. A review on role of essential trace elements in health and disease[J]. J NTR Univ Health Sci, 2015, 4(2): 75.

    [73] [73] BIENERT G P, TAMáS M J. Editorial: molecular mechanisms of metalloid transport, toxicity and tolerance[J]. Front Cell Dev Biol, 2018, 6: 99.

    [74] [74] KARGOZAR S, HAMZEHLOU S, BAINO F. Can bioactive glasses be useful to accelerate the healing of epithelial tissues?[J]. Mater Sci Eng C Mater Biol Appl, 2019, 97: 1009-1020.

    [75] [75] POURSHAHRESTANI S, ZEIMARAN E, KADRI N A, et al. Gallium-containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy[J]. J Mater Chem B, 2016, 4(1): 71-86.

    [76] [76] WANG X C, CHANG J, WU C T. Bioactive inorganic/organic nanocomposites for wound healing[J]. Appl Mater Today, 2018, 11: 308-319.

    [77] [77] M?RZA S M, MAGYARI K, BOGDAN S, et al. Skin wound regeneration with bioactive glass-gold nanoparticles ointment[J]. Biomed Mater, 2019, 14(2): 025011.

    [78] [78] FRANCIS L, MENG D C, LOCKE I C, et al. Novel poly(3-hydroxybutyrate) composite films containing bioactive glass nanoparticles for wound healing applications[J]. Polym Int, 2016, 65(6): 661-674.

    [79] [79] CUI X, HUANG W H, ZHANG Y D, et al. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model[J]. Mater Sci Eng C Mater Biol Appl, 2017, 73: 585-595.

    [80] [80] DEMIRCI S, DO?AN A, AYD?N S, et al. Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation[J]. Mol Cell Biochem, 2016, 417(1-2): 119-133.

    [81] [81] ZHOU J, WANG H, ZHAO S C, et al. In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing[J]. Mater Sci Eng C Mater Biol Appl, 2016, 60: 437-445.

    Tools

    Get Citation

    Copy Citation Text

    LIU Chunyu, WANG Xue, SHU Dan, LI Shuaijie, ZHNAG Liyan, CUI Xu, LI Honglong, PAN Haobo. Progress on Promoting Wound Healing with Boric Acid/Borosilicate Bioactive Glass[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 681

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 10, 2023

    Accepted: --

    Published Online: Aug. 5, 2024

    The Author Email: Haobo PAN (hb.pan@siat.ac.cn)

    DOI:

    CSTR:32186.14.

    Topics