Study On Optical Communications, Volume. 50, Issue 1, 23016001(2024)

Advances in Beyond 100 Gbit/s Fiber-Wireless Integrated Transmission Technology

Shuang GAO1, Jiao ZHANG1,2、*, and Min ZHU1,2
Author Affiliations
  • 1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
  • 2Purple Mountain Laboratories, Nanjing 211111, China
  • show less
    References(25)

    [1] Cherry S. Edholm's Law of Bandwidth[J]. IEEE Spectrum, 41, 58-60(2004).

    [2] Kawanishi T. THz and Photonic Seamless Communications[J]. Journal of Lightwave Technology, 37, 1671-1679(2019).

    [3] Boulogeorgos A A A, Alexiou A, Merkle T et al. Terahertz Technologies to Deliver Optical Network Quality of Experience in Wireless Systems beyond 5G[J]. IEEE Communications Magazine, 56, 144-151(2018).

    [4] Koenig S, Antes J, Lopez-Diaz D et al. High-speed Wireless Bridge at 220 GHz Connecting Two Fiber-optic Links each Spanning up to 20 km[C], OM2B.1(2012).

    [5] Koenig S, Lopez-Diaz D, Antes J et al. Wireless Sub-THz Communication System with High Data Rate[J]. Nature Photonics, 7, 977-981(2013).

    [6] Wang C, Yu J J, Li X Y et al. Fiber-THz-fiber Link for THz Signal Transmission[J]. IEEE Photonics Journal, 10, 1-6(2018).

    [7] Wang C, Li X Y, Wang K H et al. Seamless Integration of a Fiber-THz Wireless-fiber 2×2 MIMO Broadband Network[C], 8595773(2018).

    [8] Ummethala S, Harter T, Koehnle K et al. THz-to-optical Conversion in Wireless Communications Using an Ultra-broadband Plasmonic Modulator[J]. Nature Photonics, 13, 519-524(2019).

    [9] Castro C, Elschner R, Merkle T et al. 100 Gb/s Real-time Transmission over a THz Wireless Fiber Extender Using a Digital-coherent Optical Modem[C], m4i.2(2020).

    [10] Castro C, Elschner R, Machado J et al. Ethernet Transmission over a 100 Gb/s Real-time Terahertz Wireless Link[C], 9024443(2019).

    [11] Horst Y, Blatter T, Kulmer L et al. Transparent Optical-THz-optical Link at 240/192 Gbit/s over 5/115 m Enabled by Plasmonics[J]. Journal of Lightwave Technology, 40, 1690-1697(2022).

    [12] Dat P T, Yamaguchi Y, Inagaki K et al. Transparent Fiber-radio-fiber Bridge at 101 GHz Using Optical Modulator and Direct Photonic Down-conversion[C], F3C.4(2021).

    [13] Gonzalez-Guerrero L, Shams H, Fatadin I et al. Pilot-tone Assisted 16-QAM Photonic Wireless Bridge Operating at 250 GHz[J]. Journal of Lightwave Technology, 39, 2725-2736(2021).

    [14] Zhang J, Zhu M, Lei M Z et al. Demonstration of Real-time 125.516 Gbit/s Transparent Fiber-THz-fiber Link Transmission at 360~430 GHz based on Photonic Down-conversion[C], M3C.2(2022).

    [15] Zhang J, Zhu M, Lei M Z et al. Real-time Demonstration of 103.125-Gbps Fiber-THz-fiber 2 × 2 MIMO Transparent Transmission at 360-430 GHz based on Photonics[J]. Optics Letters, 47, 1214-1217(2022).

    [16] Zhang J, Zhu M, Hua B C et al. Real-time Demonstration of 100 GbE THz-wireless and Fiber Seamless Integration Networks[J]. Journal of Lightwave Technology, 41, 1129-1138(2023).

    [17] Zhang J, Lei M Z, Zhu M et al. Optical-terahertz-optical Seamless Integration System for Dual-λ 400 GbE Real-time Transmission at 290 GHz and 340 GHz[J]. Science China Information Sciences, 66, 1-3(2023).

    [18] Welch D, Napoli A, Bäck J et al. Point-to-multipoint Optical Networks Using Coherent Digital Subcarriers[J]. Journal of Lightwave Technology, 39, 5232-5247(2021).

    [19] Fan Y Y, Fu M F, Jiang H X et al. Point-to-multipoint Coherent Architecture with Joint Resource Allocation for B5G/6G Fronthaul[J]. IEEE Wireless Communications, 29, 100-106(2022).

    [20] Bäck J, Wright P, Ambrose J et al. CAPEX Savings Enabled by Point-to-multipoint Coherent Pluggable Optics Using Digital Subcarrier Multiplexing in Metro Aggregation Networks[C], 9333233(2020).

    [21] Li Z Y, Jia J L, Li G Q et al. Deep-learning-based Multi-user Framework for End-to-end Fiber-MMW Communications[J]. Optics Express, 31, 15239-15255(2023).

    [22] O’Shea T, Hoydis J. An Introduction to Deep Learning for the Physical Layer[J]. IEEE Transactions on Cognitive Communications and Networking, 3, 563-575(2017).

    [23] Lin X H, Chi N. Constellation Geometrically Shaping and Artificial Intelligence Technology in Underwater Visible Light Communication[J]. Study on Optical Communications, 21-27(2023).

    [24] Shi J Y, Li Z Y, Jia J L et al. Waveform-to-waveform End-to-end Learning Framework in a Seamless Fiber-terahertz Integrated Communication System[J]. Journal of Lightwave Technology, 41, 2381-2392(2023).

    [25] Buchali F, Böcherer G, Idler W et al. Experimental Demonstration of Capacity Increase and Rate-adaptation by Probabilistically Shaped 64-QAM[C], 7341688(2015).

    Tools

    Get Citation

    Copy Citation Text

    Shuang GAO, Jiao ZHANG, Min ZHU. Advances in Beyond 100 Gbit/s Fiber-Wireless Integrated Transmission Technology[J]. Study On Optical Communications, 2024, 50(1): 23016001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 29, 2023

    Accepted: --

    Published Online: Apr. 9, 2024

    The Author Email: ZHANG Jiao (jiaozhang@seu.edu.cn)

    DOI:10.13756/j.gtxyj.2024.230160

    Topics