Journal of the Chinese Ceramic Society, Volume. 52, Issue 7, 2216(2024)

Fabrication of Nickel Selenide/Nickel Sulfide Nanocomposites and Their Performance of Electrochemical Energy Storage

HUANG Ting... FAN Jincheng*, TAN Zicong, WANG Zhihao and CUI Kexin |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(39)

    [1] [1] LU L, XU Q Q, CHEN Y K, et al. Preparation of metal sulfide electrode materials derived based on metal organic framework and application of supercapacitors[J]. J Energy Storage, 2022, 49: 104073.

    [2] [2] LI Y F, QIU Z Z, QU M, et al. Mo-doped ZIF-67 derived Ni, Co, Mo trimetallic sulfide/carbon nanotubes for supercapacitors[J]. J Energy Storage, 2023, 73: 108997.

    [3] [3] ZHANG Y, CAO N, SZUNERITS S, et al. Fabrication of ZnCoS nanomaterial for high energy flexible asymmetric supercapacitors[J]. Chem Eng J, 2019, 374: 347-358.

    [4] [4] GAO Y, ZHAO L J. Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors[J]. Chem Eng J, 2022, 430: 132745.

    [5] [5] GUO J X, ZHANG X Q, SUN Y F, et al. Double-shell CuS nanocages as advanced supercapacitor electrode materials[J]. J Power Sources, 2017, 355: 31-35.

    [6] [6] KANG C X, MA L, CHEN Y C, et al. Metal-organic framework derived hollow rod-like NiCoMn ternary metal sulfide for high-performance asymmetric supercapacitors[J]. Chem Eng J, 2022, 427: 131003.

    [7] [7] EVARISTE U, JIANG G H, YU B, et al. One-step electrodeposition of molybdenum nickel cobalt sulfides on Ni foam for high-performance asymmetric supercapacitors[J]. J Energy Storage, 2020, 29: 101419.

    [8] [8] CAO J H, HU Y Z, ZHU Y Y, et al. Synthesis of mesoporous nickel-cobalt-manganese sulfides as electroactive materials for hybrid supercapacitors[J]. Chem Eng J, 2021, 405: 126928.

    [9] [9] SHI Z Q, SHEN X T, ZHANG Z, et al. Hierarchically urchin-like hollow NiCo2S4 prepared by a facile template-free method for high-performance supercapacitors[J]. J Colloid Interface Sci, 2021, 604: 292-300.

    [10] [10] LU P Y, JIANG X T, GUO W L, et al. A Ni-Co sulfide nanosheet/carbon nanotube hybrid film for high-energy and high-power flexible supercapacitors[J]. Carbon, 2021, 178: 355-362.

    [11] [11] CHEN Y, WANG L J, GAN H, et al. Designing NiS/CoS decorated NiCo2S4 nanoflakes towards high performance binder-free supercapacitors[J]. J Energy Storage, 2022, 47: 103625.

    [12] [12] XIAO T, CHEN F, ZHOU W J, et al. Ni-Bi-S nanosheets/Ni foam as a binder-free high-performance electrode for asymmetric supercapacitors[J]. Chem Eng J, 2019, 378: 122162.

    [13] [13] ZARDKHOSHOUI A M, DAVARANI S S H. Synthesis of NiGa2S4-rGO on nickel foam as advanced electrode for flexible solid-state supercapacitor with superior energy density[J]. J Colloid Interface Sci, 2019, 535: 195-204.

    [14] [14] LU W, YANG M, JIANG X, et al. Template-assisted synthesis of hierarchically hollow C/NiCo2S4 nanospheres electrode for high performance supercapacitors[J]. Chem Eng J, 2020, 382: 122943.

    [15] [15] KUMBHAR V S, CHODANKAR N R, LEE K, et al. Insights into the interfacial nanostructuring of NiCo2S4 and their electrochemical activity for ultra-high capacity all-solid-state flexible asymmetric supercapacitors[J]. J Colloid Interface Sci, 2019, 557: 423-437.

    [16] [16] HUSSAIN S, HASSAN M, JAVED M S, et al. Distinctive flower-like CoNi2S4 nanoneedle arrays (CNS-NAs) for superior supercapacitor electrode performances[J]. Ceram Int, 2020, 46(16): 25942-25948.

    [17] [17] LAMA TAMANG T, SAHOO S, SHIM J J. Triple-shelled nickel-cobalt-manganese sulfides hollow spheres for advanced hybrid supercapacitors[J]. J Power Sources, 2023, 572: 233107.

    [18] [18] LI Q H, LU W, LI Z P, et al. Hierarchical MoS2/NiCo2S4@C urchin-like hollow microspheres for asymmetric supercapacitors[J]. Chem Eng J, 2020, 380: 122544.

    [19] [19] ZHANG J X, DENG Y, WU Y Q, et al. Chemically coupled 0D-3D hetero-structure of Co9S8-Ni3S4 hollow spheres for Zn-based supercapacitors[J]. Chem Eng J, 2022, 430: 132836.

    [20] [20] YU X, YU J L, HOU L, et al. Double-shelled hollow hetero-MnCo2S4/CoS1.097 spheres with carbon coating for advanced supercapacitors[J]. J Power Sources, 2018, 408: 65-73.

    [21] [21] MOHAMMADI ZARDKHOSHOUI A, AMERI B, SAEED HOSSEINY DAVARANI S. A hybrid supercapacitor assembled by reduced graphene oxide encapsulated lollipop-like FeNi2S4@Co9S8 nanoarrays[J]. Chem Eng J, 2023, 470: 144132.

    [22] [22] ZHANG M M, LIU H, WANG Y, et al. A novel synthesis of Fe7S8@Fe5Ni4S8 flower center/petal hierarchical nanostructure: Application as advance cathode material for high-performance supercapacitors[J]. J Colloid Interface Sci, 2019, 536: 609-617.

    [23] [23] JIA Z X, WANG Y N, CHEN J Q, et al. Metal-organic frameworks derived low-crystalline NiCo2S4/Co3S4 nanocages with dual heterogeneous interfaces for high-performance supercapacitors[J]. Chin Chem Lett, 2023, 34(1): 107137.

    [24] [24] JIA H N, FAN J H, FAN Y W, et al. Cation substituted Ni3S2 nanosheets wrapped Zn0.76Co0.24S nanowire arrays prepared with in situ oxidative etching strategy for high performance solid-state asymmetric supercapacitors[J]. J Energy Storage, 2022, 46: 103870.

    [25] [25] DENG Y F, CHEN Y, ZHANG X L, et al. One-step synthesis of 2D vertically-aligned hybrid CuSe@NiSe nanosheets for high performance flexible supercapacitors[J]. J Alloys Compd, 2022, 892: 162159.

    [26] [26] SUN Y S, WANG Y, WANG C X, et al. Construction of Co9S8@NiCo2S4 core-shell hetero-nanostructure with synergistic effect of abundant mesopores and multi-metallic elements for novel high-performance flexible hybrid supercapacitors[J]. Chem Eng J, 2023, 469: 143812.

    [27] [27] GAN Z W, REN X H, SUN Y X, et al. Highly porous nanocomposites of Mn doped cobalt-based hydroxide/sulfide as high-performance electrode materials for hybrid supercapacitors[J]. J Energy Storage, 2023, 69: 107934.

    [28] [28] TAO K Y, GONG Y, LIN J H. Epitaxial grown self-supporting NiSe/Ni3S2/Ni12P5 vertical nanofiber arrays on Ni foam for high performance supercapacitor: Matched exposed facets and re-distribution of electron density[J]. Nano Energy, 2019, 55: 65-81.

    [29] [29] ZHAO L C, ZHANG P, ZHANG Y N, et al. Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors[J]. J Mater Sci Technol, 2020, 54: 69-76.

    [30] [30] CHEN F S, JI S, LIU Q B, et al. Rational design of hierarchically core-shell structured Ni3S2@NiMoO4 nanowires for electrochemical energy storage[J]. Small, 2018, 14(27): 1800791.

    [31] [31] KIM D Y, LEE H, CHOI S R, et al. Synthesis of hierarchically porous Ni foam-supported heazlewoodite Ni3S2 nanorod electrocatalysts for highly efficient oxygen evolution reaction[J]. J Alloys Compd, 2022, 914: 165305.

    [32] [32] CHANG Y, SUI Y W, QI J Q, et al. Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials[J]. Electrochim Acta, 2017, 226: 69-78.

    [33] [33] NAN Y B, WANG X T, NING X B, et al. Fabrication of Ni3S2/TiO2 photoanode material for 304 stainless steel photocathodic protection under visible light[J]. Surf Coat Technol, 2019, 377: 124935.

    [34] [34] LI X X, SUN J K, FENG L Y, et al. Cactus-like ZnS/Ni3S2 hybrid with high electrochemical performance for supercapacitors[J]. J Alloys Compd, 2018, 753: 508-516.

    [35] [35] CHEN J Y, NAKATE U T, NGUYEN Q T, et al. Electrodeposited Bi(OH)3@Mo(OH)4 nanostructured electrode for high-performance supercapacitor application[J]. Ceram Int, 2022, 48(15): 22417-22425.

    [36] [36] LEI C H, MARKOULIDIS F, ASHITAKA Z, et al. Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC)[J]. Electrochim Acta, 2013, 92: 183-187.

    [37] [37] MEI B G, MUNTESHARI O, LAU J, et al. Physical interpretations of nyquist plots for EDLC electrodes and devices[J]. J Phys Chem C, 2018, 122(1): 194-206.

    [38] [38] ZHANG H N, LIU Y, ZHU C, et al. Influence of annealing process on the electrochemical properties of Ni3S2 electrode for stable supercapacitors[J]. J Energy Storage, 2020, 32: 101946.

    [39] [39] CHEN F S, CHEN Y N, HAN Q, et al. One-step synthesis of hierarchical Ni3Se2 nanosheet-on-nanorods/Ni foam electrodes for hybrid supercapacitors[J]. Chin Chemical Lett, 2022, 33(1): 475-479.

    Tools

    Get Citation

    Copy Citation Text

    HUANG Ting, FAN Jincheng, TAN Zicong, WANG Zhihao, CUI Kexin. Fabrication of Nickel Selenide/Nickel Sulfide Nanocomposites and Their Performance of Electrochemical Energy Storage[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2216

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 2, 2024

    Accepted: --

    Published Online: Aug. 26, 2024

    The Author Email: Jincheng FAN (fanjincheng2009@163.com)

    DOI:10.14062/j.issn.0454-5648.20240002

    Topics