Electronics Optics & Control, Volume. 29, Issue 2, 16(2022)
Hyperspectral Image Anomaly Detection Based on Improved RX Incremental Learning
[1] [1] GUELMAN M, ORTENBERG F.Small satellites role in future hyperspectral Earth observation missions[J].Acta Astronautica, 2009, 64(11/12): 1252-1263.
[5] [5] BLACKBURN G A.Hyperspectral remote sensing of plant pigments[J].Journal of Experimental Botany, 2007, 58(4): 855-867.
[8] [8] DONG Y C, CHEN F S, WANG Y, et al.A limb atmospheric radiance inversion method based on a sun-synchronous orbit satellite[C]//Proceedings of SPIE.[S.l.]: SPIE, 2015.doi: 10.1117/12.2180861.
[9] [9] SCHARF L L, FRIEDLANDER B.Matched subspace detectors[J].IEEE Transactions on Signal Processing, 1994, 42(8): 2146-2157.
[10] [10] HARSANYI J C, CHANG C I.Hyperspectral image clas-sification and dimensionality reduction: an orthogonal subspace projection approach[J].IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 779-785.
[12] [12] XIE W Y, LIU B Z, LI Y S, et al.Autoencoder and adversarial-learning-based semisupervised background estimation for hyperspectral anomaly detection[J].IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5416-5427.
[13] [13] STEIN D, BEAVEN S G, HOFF L E, et al.Anomaly detection from hyperspectral imagery[J].IEEE Signal Processing Magazine, 2002, 19(1): 58-69.
[16] [16] ZHANG N, XIE S B, LUO H L, et al.Airport aircraft target detection based on space spectrum feature fusion[C]//The 5th International Conference on Computer and Communication Systems (ICCCS).Shanghai: IEEE, 2020: 967-971.
Get Citation
Copy Citation Text
BAI Yu, LIU Lina, ZHANG Ning, LIN Chen, SONG Wei, ZHU Xinzhong. Hyperspectral Image Anomaly Detection Based on Improved RX Incremental Learning[J]. Electronics Optics & Control, 2022, 29(2): 16
Category:
Received: Jan. 28, 2021
Accepted: --
Published Online: Mar. 4, 2022
The Author Email: