Photonics Research, Volume. 10, Issue 8, 1877(2022)

Stimulated generation of deterministic platicon frequency microcombs

Hao Liu1,5、†,*, Shu-Wei Huang1,2、†, Wenting Wang1, Jinghui Yang1, Mingbin Yu3, Dim-Lee Kwong3, Pierre Colman4, and Chee Wei Wong1,6、*
Author Affiliations
  • 1Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California Los Angeles, Los Angeles, California 90095, USA
  • 2Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
  • 3Institute of Microelectronics, Singapore, Singapore
  • 4Université de Bourgogne Franche-Comté, ICB, UMR CNRS 6303, Dijon, France
  • 5e-mail: haoliu1991@ucla.edu
  • 6e-mail: cheewei.wong@ucla.edu
  • show less
    References(73)

    [1] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [2] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [3] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158-169(2019).

    [4] C. Xiang, J. Liu, J. Guo, L. Chang, R. N. Wang, W. Weng, J. Peters, W. Xie, Z. Zhang, J. Riemensberger, J. Selvidge, T. J. Kippenberg, J. E. Bowers. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99-103(2021).

    [5] L. Chang, S. Liu, J. E. Bowers. Integrated optical frequency comb technologies. Nat. Photonics, 16, 95-108(2022).

    [6] B. J. M. Hausmann, I. Bulu, V. Venkataraman, P. Deotare, M. Lončar. Diamond nonlinear photonics. Nat. Photonics, 8, 369-374(2014).

    [7] H. Jung, C. Xiong, K. Y. Fong, X. Zhang, H. X. Tang. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett., 38, 2810-2813(2013).

    [8] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [9] T. Herr, V. Brasch, J. D. Jost, I. Mirgorodskiy, G. Lihachev, M. L. Gorodetsky, T. J. Kippenberg. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett., 113, 123901(2014).

    [10] M. Pu, L. Ottaviano, E. Semenova, K. Yvind. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823-826(2016).

    [11] Y. He, Q.-F. Yang, J. Ling, R. Luo, H. Liang, M. Li, B. Shen, H. Wang, K. Vahala, Q. Lin. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138-1148(2019).

    [12] V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, T. J. Kippenberg. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).

    [13] S.-W. Huang, J. Yang, J. Lim, H. Zhou, M. Yu, D.-L. Kwong, C. W. Wong. A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz. Sci. Rep., 5, 13355(2015).

    [14] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, T. J. Kippenberg. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics, 6, 480-487(2012).

    [15] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M.-G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, S. B. Papp. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [16] B. Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, W. Xie, J. Guo, D. Kinghorn, L. Wu, Q.-X. Ji, T. J. Kippenberg, K. Vahala, J. E. Bowers. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).

    [17] B. Stern, X. Ji, Y. Okawachi, A. L. Gaeta, M. Lipson. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [18] S.-W. Huang, J. Yang, S.-H. Yang, M. Yu, D.-L. Kwong, T. Zelevinsky, M. Jarrahi, C. W. Wong. Globally stable microresonator turing pattern formation for coherent high-power THz radiation on-chip. Phys. Rev. X, 7, 041002(2017).

    [19] B. Yao, S.-W. Huang, Y. Liu, A. K. Vinod, C. Choi, M. Hoff, Y. Li, M. Yu, Z. Feng, D.-L. Kwong, Y. Huang, Y. Rao, X. Duan, C. W. Wong. Gate-tunable frequency combs in graphene–nitride microresonators. Nature, 558, 410-414(2018).

    [20] Q.-F. Yang, X. Yi, K. Y. Yang, K. Vahala. Counter-propagating solitons in microresonators. Nat. Photonics, 11, 560-564(2017).

    [21] X. Xue, Y. Xuan, Y. Liu, P.-H. Wang, S. Chen, J. Wang, D. E. Leaird, M. Qi, A. M. Weiner. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 9, 594-600(2015).

    [22] M. Yu, J. K. Jang, Y. Okawachi, A. G. Griffith, K. Luke, S. A. Miller, X. Ji, M. Lipson, A. L. Gaeta. Breather soliton dynamics in microresonators. Nat. Commun., 8, 14569(2017).

    [23] X. Yi, Q.-F. Yang, X. Zhang, K. Y. Yang, X. Li, K. Vahala. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun., 8, 14869(2017).

    [24] M. Karpov, M. H. P. Pfeiffer, H. Guo, W. Weng, J. Liu, T. J. Kippenberg. Dynamics of soliton crystals in optical microresonators. Nat. Phys., 15, 1071-1077(2019).

    [25] T. E. Drake, J. R. Stone, T. C. Briles, S. B. Papp. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photonics, 14, 480-485(2020).

    [26] A. K. Vinod, S.-W. Huang, J. Yang, M. Yu, D.-L. Kwong, C. W. Wong. Frequency microcomb stabilization via dual-microwave control. Commun. Phys., 4, 81(2021).

    [27] M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, K. J. Vahala. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).

    [28] X. Ji, X. Yao, A. Klenner, Y. Gan, A. L. Gaeta, C. P. Hendon, M. Lipson. Chip-based frequency comb sources for optical coherence tomography. Opt. Express, 27, 19896-19905(2019).

    [29] P. J. Marchand, J. C. Skehan, J. Riemensberger, J. Ho, M. H. P. Pfeiffer, J. Liu, C. Hauger, T. Lasser, T. J. Kippenberg. Soliton microcomb based spectral domain optical coherence tomography. Nat. Commun., 12, 427(2019).

    [30] S.-W. Huang, J. Yang, M. Yu, B. H. McGuyer, D.-L. Kwong, T. Zelevinsky, C. W. Wong. A broadband chip-scale optical frequency synthesizer at 2.7 × 10−16 relative uncertainty. Sci. Adv., 2, e1501489(2016).

    [31] J. Kiessling, I. Breunig, P. G. Schunemann, K. Buse, K. L. Vodopyanov. High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy. New J. Phys., 15, 105014(2013).

    [32] Y.-S. Jang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, C. W. Wong. Nanometric precision distance metrology via hybrid spectrally resolved and homodyne interferometry in a single soliton frequency microcomb. Phys. Rev. Lett., 126, 023903(2021).

    [33] J. Riemensberger, A. Lukashchuk, M. Karpov, W. Weng, E. Lucas, J. Liu, T. J. Kippenberg. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).

    [34] P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, C. Koos. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [35] A. Fülöp, M. Mazur, A. Lorences-Riesgo, Ó. B. Helgason, P.-H. Wang, Y. Xuan, D. E. Leaird, M. Qi, P. A. Andrekson, A. M. Weiner, V. Torres-Company. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun., 9, 1598(2018).

    [36] B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. J. Moss. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun., 11, 2568(2020).

    [37] T. J. Kippenberg, A. L. Gaeta, M. Lipson, M. L. Gorodetsky. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [38] S. Miller, K. Luke, Y. Okawachi, J. Cardenas, A. L. Gaeta, M. Lipson. On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities. Opt. Express, 22, 26517-26525(2014).

    [39] A. E. Dorche, S. Abdollahramezani, H. Taheri, A. A. Eftekhar, A. Adibi. Extending chip-based Kerr-comb to visible spectrum by dispersive wave engineering. Opt. Express, 25, 22362-22374(2017).

    [40] Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A. Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J. Wang, D. E. Leaird, A. M. Weiner, M. Qi. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 3, 1171-1180(2016).

    [41] H. Zhou, S.-W. Huang, Y. Dong, M. Liao, K. Qiu, C. W. Wong. Stability and intrinsic fluctuations of dissipative cavity solitons in Kerr frequency microcombs. IEEE Photon. J., 7, 3200113(2015).

    [42] S.-W. Huang, H. Liu, J. Yang, M. Yu, D.-L. Kwong, C. W. Wong. Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression. Sci. Rep., 6, 26255(2016).

    [43] A. Kordts, M. H. P. Pfeiffer, H. Guo, V. Brasch, T. J. Kippenberg. Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation. Opt. Lett., 41, 452-455(2016).

    [44] H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, T. J. Kippenberg. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).

    [45] H. Zhou, Y. Geng, W. Cui, S. W. Huang, Q. Zhou, K. Qiu, C. W. Wong. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 50(2019).

    [46] E. Lucas, H. Guo, J. D. Jost, M. Karpov, T. J. Kippenberg. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators. Phys. Rev. A, 95, 043822(2017).

    [47] J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, T. J. Kippenberg. Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 5, 1347-1353(2018).

    [48] G. Lihachev, J. Liu, W. Weng, L. Chang, J. Guo, J. He, R. N. Wang, M. H. Anderson, J. E. Bowers, T. J. Kippenberg. Platicon microcomb generation using laser self-injection locking. Nat. Commun., 13, 1771(2022).

    [49] J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, T. J. Kippenberg. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 12, 2236(2021).

    [50] W. Jin, Q.-F. Yang, L. Chang, B. Shen, H. Wang, M. A. Leal, L. Wu, M. Gao, A. Feshali, M. Paniccia, K. J. Vahala, J. E. Bowers. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [51] S.-W. Huang, H. Zhou, J. Yang, J. F. McMillan, A. Matsko, M. Yu, D.-L. Kwong, L. Maleki, C. W. Wong. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett., 114, 053901(2015).

    [52] A. B. Matsko, A. A. Savchenkov, L. Maleki. Normal group-velocity dispersion Kerr frequency comb. Opt. Lett., 37, 43-45(2012).

    [53] C. Godey, I. V. Balakireva, A. Coillet, Y. K. Chembo. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A, 89, 063814(2014).

    [54] W. Liang, A. A. Savchenkov, V. S. Ilchenko, D. Eliyahu, D. Seidel, A. B. Matsko, L. Maleki. Generation of a coherent near-infrared Kerr frequency comb in a monolithic microresonator with normal GVD. Opt. Lett., 39, 2920-2923(2014).

    [55] A. Rizzo, A. Novick, V. Gopal, B. Y. Kim, X. Ji, S. Daudlin, Y. Okawachi, Q. Cheng, M. Lipson, A. L. Gaeta, K. Bergman. Integrated Kerr frequency comb-driven silicon photonic transmitter(2021).

    [56] H. Shu, L. Chang, Y. Tao, B. Shen, W. Xie, M. Jin, A. Netherton, Z. Tao, X. Zhang, R. Chen, B. Bai, J. Qin, S. Yu, X. Wang, J. E. Bowers. Bridging microcombs and silicon photonic engines for optoelectronics systems. Nature, 605, 457-463(2022).

    [57] V. E. Lobanov, G. Lihachev, T. J. Kippenberg, M. L. Gorodetsky. Frequency combs and platicons in optical microresonators with normal GVD. Opt. Express, 23, 7713-7721(2015).

    [58] Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, A. M. Weiner. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica, 1, 137-144(2014).

    [59] X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. Qi, A. M. Weiner. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photon. Rev., 9, L23-L28(2015).

    [60] Ó. B. Helgason, F. R. Arteaga-Sierra, Z. Ye, K. Twayana, P. A. Andrekson, M. Karlsson, J. Schröder, V. Torres-Company. Dissipative solitons in photonic molecules. Nat. Photonics, 15, 305-310(2021).

    [61] V. E. Lobanov, A. V. Cherenkov, A. E. Shitikov, I. A. Bilenko, M. L. Gorodetsky. Dynamics of platicons due to third-order dispersion. Eur. Phys. J. D, 71, 185(2017).

    [62] V. E. Lobanov, A. E. Shitikov, R. R. Galiev, K. N. Min’kov, N. M. Kondratiev. Generation and properties of dissipative Kerr solitons and platicons in optical microresonators with backscattering. Opt. Express, 28, 36544-36558(2020).

    [63] A. M. Kaplan, G. P. Agrawal, D. N. Maywar. Optical square-wave clock generation based on an all-optical flip-flop. IEEE Photon. Technol. Lett., 22, 489-491(2010).

    [64] L. K. Oxenlowe, R. Slavik, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azana, P. Jeppesen. 640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper. IEEE J. Sel. Top. Quantum Electron., 14, 566-572(2008).

    [65] E. Palushani, L. K. Oxenlowe, M. Galili, H. Mulvad, A. T. Clausen, P. Jeppesen. Flat-top pulse generation by the optical Fourier transform technique for ultrahigh speed signal processing. IEEE J. Quantum Electron., 45, 1317-1324(2009).

    [66] V. V. Lozovoy, G. Rasskazov, A. Ryabtsev, M. Dantus. Phase-only synthesis of ultrafast stretched square pulses. Opt. Express, 23, 27105-27112(2015).

    [67] M. H. Anderson, G. Lihachev, W. Weng, J. Liu, T. J. Kippenberg. Zero-dispersion Kerr solitons in optical microresonators(2020).

    [68] V. E. Lobanov, G. Lihachev, M. L. Gorodetsky. Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump. Europhys. Lett., 112, 54008(2015).

    [69] H. Liu, S.-W. Huang, J. Yang, M. Yu, D.-L. Kwong, C. W. Wong. Bright square pulse generation by pump modulation in a normal GVD microresonator. Conference on Lasers and Electro-Optics, FTu3D.3(2017).

    [70] A. Antikainen, G. P. Agrawal. Dual-pump frequency comb generation in normally dispersive optical fibers. J. Opt. Soc. Am. B, 32, 1705-1711(2015).

    [71] C. Finot, B. Kibler, L. Provost, S. Wabnitz. Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers. J. Opt. Soc. Am. B, 25, 1938-1948(2008).

    [72] J. Fatome, C. Finot, G. Millot, A. Armaroli, S. Trillo. Observation of optical undular bores in multiple four-wave mixing. Phys. Rev. X, 4, 021022(2014).

    [73] W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, T. J. Kippenberg. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Phys. Rev. Lett., 122, 013902(2019).

    Tools

    Get Citation

    Copy Citation Text

    Hao Liu, Shu-Wei Huang, Wenting Wang, Jinghui Yang, Mingbin Yu, Dim-Lee Kwong, Pierre Colman, Chee Wei Wong. Stimulated generation of deterministic platicon frequency microcombs[J]. Photonics Research, 2022, 10(8): 1877

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Integrated Optics

    Received: Mar. 28, 2022

    Accepted: May. 15, 2022

    Published Online: Jul. 21, 2022

    The Author Email: Hao Liu (haoliu1991@ucla.edu), Chee Wei Wong (cheewei.wong@ucla.edu)

    DOI:10.1364/PRJ.459403

    Topics