Journal of the Chinese Ceramic Society, Volume. 51, Issue 1, 194(2023)

Selective Catalytic Reduction Activity of MnOx/TiO2 Catalyst Under Impact of Mineral Polarization

HELIAN Yizhe*... CUI Suping, MA Xiaoyu, WANG Yali and XU Haiying |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(24)

    [1] [1] LIU Z, CHEN C, ZHAO J, et al. Study on the NO2 production pathways and the role of NO2 in fast selective catalytic reduction DeNOx at low-temperature over MnOx/TiO2 catalyst [J]. Chem Eng J, 2020, 379: 122288-122288.

    [2] [2] ZHANG T. Study on performance of regeneration active liquid implanted into deactivated honeycomb denitration catalyst in different solvent[J]. Electric Power Technol Environ Prot, 2019, 35(3): 22-24.

    [3] [3] LIU Z, SUN G X, CHEN C, et al. Fe-doped Mn3O4 spinel nanoparticles with highly exposed Feoct?O?Mntet sites for e?cient selective catalytic reduction (SCR) of NO with ammonia at low temperatures[J]. ACS Catalysis, 2020, 10, 6803-6809.

    [4] [4] QI G, YANG R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. Appl Catal B, 2003, 44, 217?225.

    [5] [5] SHEN L, HU J, ZHU X Q, et al. Identification of natural tourmaline and similar gems by diffuse reflection fourier transform middle infrared spectrum[J]. Amri, 2011, 177: 610-612.

    [6] [6] ZHANG H, MENG J, LIANG J, Et al. Effect of the dosage of tourmaline on far infrared emission properties of tourmaline/glass composite materials[J]. Jnn, 2016, 16(4): 3899-3903.

    [7] [7] QI S, ZHAO Y, MA N, et al. Photocatalytic mechanism of tourmaline/BiVO4 composites with different ratios[J]. Inorg Nano-Met Chem, 2019, 47(9): 145-151.

    [8] [8] HE LIAN Y Z, CUI S P, MA X Y, et al. The effect of tourmaline on SCR denitrification activity of MnOx/TiO2 at low temperature[J]. Catalysts, 2020, 10(9): 1020.

    [9] [9] YANG G, ZHAO H, LUO X, et al, Promotion e?ect and mechanism of the addition of Mo on the enhanced low temperature SCR of NOx by NH3 over MnOx/γ-Al2O3 catalysts[J]. Appl Catal B: Environ, 2019, 245: 743-752.

    [10] [10] WANG P, TIAN X Y, HUANG X, et al. Influence of the pyroelectricity function porcelain tourmaline film on water pH value[J]. CSTPCD, 2009, 28(3): 484-490.

    [11] [11] LANG S B. A 2400 year history of pyroelectricity: from Ancient Greece to exploration of the solar system[J]. Brit Ceram T, 2004, 103(2): 65-70.

    [12] [12] WANG J, LI W, WU Z. Measurement System of Pyroelectric Coefficient for Pyroelectric Material Using Dynamic Current Method[J]. Appl Mech Mater, 2014, 510: 232-237.

    [13] [13] PARRAVICINI J, SAFIOUI J, DEGIORGIO V, et al. All-optical technique to measure the pyroelectric coefficient in electro-optic crystals[J]. J Appl Phys, 2011, 109(3): 253.

    [14] [14] ZHOU G, LIU H, CHEN K, et al. The origin of pyroelectricity in tourmaline at varying temperature[J]. J Alloys Compd, 2018, 744: 328-336.

    [15] [15] DENG S, MENG T, XU B, et al. Advanced MnOx/TiO2 catalyst with preferentially expose danatase {001} facet for low-temperature SCR of NO[J]. ACS Catal, 2016, 6: 5807-5815.

    [16] [16] HU Y M, BIAN J, YANG X, et al. Studies on lauroyl chloride modified tourmaline powder[J]. Adv mater research, 2011, 287-290: 245-248.

    [17] [17] HU H, CAI S, LI H, et al. Mechanistic aspects of deNOx processing over TiO2 supported Co-Mn oxide catalysts: Structure-activity relationships and in situ DRIFTS analysis[J]. ACS Catal, 2015(5): 6069-6077.

    [18] [18] SHI X, WANG Y, SHAN Y, et al. Investigation of the common intermediates over Fe-ZSM-5 in NH3-SCR reaction at low temperature by in situ DRIFTS[J]. J Environ Sci, 2020, 94: 32-39.

    [19] [19] WANG J, ZHANG P, LI J, et al. Room-temperature oxidation of formaldehyde by layered manganese oxide: Effect of water[J]. Environ Sci Technol, 2015, 49(20): 12372.

    [20] [20] STERE C E, ADRESS W, BURCH R, et al. Probing a non-thermal plasma activated heterogeneously catalyzed reaction using in situ DRIFTS-MS[J]. ACS Catalysis, 2015, 5(2): 956-964.

    [21] [21] ZHANG T, QU R, SU W, et al. A novel Ce-Ta mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B Environ, 2015, 176-177: 338-346.

    [22] [22] ZHOU G, ZHONG B, WANG W, et al. In situ DRIFTS study of NO reduction by NH3 over Fe-Ce-Mn/ZSM-5 catalysts[J]. Catalysis Today, 2011, 175(1): 157-163.

    [23] [23] CAO F, XIANG J, SU S, et al. The activity and characterization of MnOx-CeO2-ZrO2/γ-Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Chem Engin J, 2014, 243: 347-354.

    [24] [24] ZHU H, LI Y, ZHENG X. In-situ DRIFTS study of CeO2 supported Rh catalysts for N2O decomposition[J]. Appl Catal A: General, 2018, 571: 89-95.

    Tools

    Get Citation

    Copy Citation Text

    HELIAN Yizhe, CUI Suping, MA Xiaoyu, WANG Yali, XU Haiying. Selective Catalytic Reduction Activity of MnOx/TiO2 Catalyst Under Impact of Mineral Polarization[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 194

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 24, 2022

    Accepted: --

    Published Online: Mar. 10, 2023

    The Author Email: Yizhe HELIAN (helian@emails.bjut.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20220688

    Topics