Acta Photonica Sinica, Volume. 52, Issue 5, 0552220(2023)

Low Noise Photoelectric Detection Technology for Laser Intensity Noise Suppression in mHz Band

Liang ZHENG1, Fan LI1, Jiawei WANG1, Jianbo LI1, Li GAO1, Ziyang HE1, Xin SHANG1, Wangbao YIN2,3, Long TIAN1,3、*, Wenhai YANG4, and Yaohui ZHENG1,3
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Shanxi University, Taiyuan 030006, China
  • 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 4China Academy of Space Technology(Xi'an), Xi'an 710000, China
  • show less
    References(37)

    [1] BAILES M, BERGER B K, BRADY P R et al. Gravitational-wave physics and astronomy in the 2020s and 2030s[J]. Nature Reviews Physics, 3, 344-366(2021).

    [2] LUO Z, WANG Y, WU Y et al. The Taiji program: a concise overview[J]. Progress of Theoretical and Experimental Physics, 2021, 05A108(2021).

    [3] LUO J, CHEN L S, DUAN H Z et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 33, 035010(2016).

    [4] BADARACCO F, HARMS J, DE ROSSI C et al. KAGRA underground environment and lessons for the Einstein Telescope[J]. Physical Review D, 104, 042006(2021).

    [5] LI Qinghui, LI Wei, SUN Yu et al. Laser parameters requirement for third-generation ground-based gravitational wave detection[J]. Acta Physica Sinica, 71, 164203(2022).

    [6] ZHANG Xinmin, SU Meng, LI Hong et al. Primordial gravitational waves and the ali probe project[J]. Modern Physics, 28, 3-9(2016).

    [7] HAMMESFAHR A. LISA mission study overview[J]. Classical and Quantum Gravity, 18, 4045(2001).

    [8] ZHANG Lihua, LI Ming, GAO Yongxin et al. The spacecraft system and platform technologies for gravitational wave detection in space[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 60, 129-137(2021).

    [9] LANGE B O[M]. The control and use of drag-free satellites(1964).

    [10] HU Ming, LI Hongyin, ZHOU Zebing. Drag-free control technology and its applications[J]. Manned Spaceflight, 61-69(2013).

    [11] ZHU Zhu, ZHAO Yanbin, YOU Chaolan et al. Drag-free control of non-contact satellite platform for space gravitational wave detection[J]. Journal of Nanjing University of Aeronautics & Astronautics, 54, 9-13(2022).

    [12] DENG Jianfeng, CAI Zhiming, CHEN Kun et al. Drag-free control and its application in China's space gravitational wave detection[J]. Chinese Optics, 12, 503-514(2019).

    [13] LIAN X, ZHANG J, YANG J et al. The determination for ideal release point of test masses in drag-free satellites for the detection of gravitational waves[J]. Advances in Space Research, 67, 824-833(2021).

    [14] MING M, LUO Y, LIANG Y R et al. Ultraprecision intersatellite laser interferometry[J]. International Journal of Extreme Manufacturing, 2, 022003(2020).

    [15] LI Hongyin, LIU Yanchong, WANG Chengrui et al. Preliminary design consideration and development of TianQin inertial sensor[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 60, 186-193(2021).

    [16] WU Shufan, WANG Nan, GONG Deren. Key technologies for space science gravitational wave detection[J]. Journal of Deep Space Exploration, 7, 118-127(2020).

    [17] ZIEMER J K, MARRESE R C M, ARESTIE S M et al. LISA colloid microthruster technology development plan and progress[J]. IEPC, 895(2019).

    [18] LIU Hui, WANG Shangsheng, YU Daren et al. Life assessment research status of micro-Newton electric propulsion system for space gravitational wave detection[J]. Chinese Space Science and Technology, 41, 10-20(2021).

    [19] LIU Qiang, WANG Zaiyuan, WANG Jiehao et al. Research progress on low-noise laser for space-based gravitational wave detector (invited)[J]. Acta Photonica Sinica, 51, 0751409(2022).

    [20] WANG Zaiyuan, WANG Jiehao, LI Yuhang et al. Single-frequency laser with low intensity noise in milli-hertz band for space-based gravitational wave detection[J]. Acta Physica Sinica, 72, 054205(2023).

    [21] WILLKE B, UEHARA N, GUSTAFSON E K et al. Spatial and temporal filtering of a 10-W Nd∶YAG laser with a Fabry-Perot ring-cavity premode cleaner[J]. Optics Letters, 23, 1704-1706(1998).

    [22] CHEN Y, ZHANG J, LI Y. Reduction of intensity noise of single-frequency Nd∶YVO~4 laser using mode cleaner[J]. Chinese Journal of Lasers, 28, 197-200(2001).

    [23] TSE M, YU H, KIJBUNCHOO N et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy[J]. Physical Review Letters, 123, 231107(2019).

    [24] ACERNESE F, AGATHOS M, AIELLO L et al. Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light[J]. Physical Review Letters, 123, 231108(2019).

    [25] LIU Kui, YANG Rongguo, ZHANG Hailong et al. Noise suppression of single frequency fiber laser[J]. Chinese Journal of Lasers, 36, 1852-1856(2009).

    [27] WANG Yajun, GAO Li, ZHANG Xiaoli et al. Recent development of low noise laser for precision measurement (Invited)[J]. Infrared and Laser Engineering, 49, 20201073(2020).

    [28] KWEE P, WILLKE B, DANZMANN K. Shot-noise-limited laser power stabilization with a high-power photodiode array[J]. Optics Letters, 34, 2912-2914(2009).

    [29] LI Yuqiong, WANG Luyu, WANG Chenyu. Preliminary test of performance detection and analysis of weak-light detector for space gravitational wave detection[J]. Optics and Precision Engineering, 27, 1710-1718(2019).

    [30] WANG Weijie, LI Fan, LI Jianbo et al. Research on low noise balanced homodyne detection system for space-based gravitational wave detection (Invited)[J]. Infrared and Laser Engineering, 51, 20220300(2022).

    [31] COOLEY J W, TUKEY J W. An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 19, 297-301(1965).

    [32] DE S K, STEBBINS J L, CHEN L H et al. Design, synthesis, and structure-activity relationship of substrate competitive, selective, and in vivo active triazole and thiadiazole inhibitors of the c-Jun N-terminal kinase[J]. Journal of Medicinal Chemistry, 52, 1943-1952(2009).

    [33] ZHAO Zilin, LI Fan, LI Ruixin et al. Noise characterization of low noise voltage reference at low frequency band[J]. Acta Sinica Quantum Optica, 28, 1-7(2022).

    [34] ZHOU H, WANG W, CHEN C et al. A low-noise, large-dynamic-range-enhanced amplifier based on JFET buffering input and JFET bootstrap structure[J]. IEEE Sensors Journal, 15, 2101-2105(2014).

    [35] KAY A[M]. Operational amplifier noise: techniques and tips for analyzing and reducing noise(2012).

    [37] TRÖBS M, HEINZEL G. Improved spectrum estimation from digitized time series on a logarithmic frequency axis[J]. Measurement, 39, 120-129(2006).

    [38] JUNKER J, OPPERMANN P, WILLKE B. Shot-noise-limited laser power stabilization for the AEI 10 m Prototype interferometer[J]. Optics Letters, 42, 755-758(2017).

    [39] LI Fan, WANG Jiawei, GAO Zichao et al. Laser intensity noise evaluation system for space-based gravitational wave detection[J]. Acta Physica Sinica, 71, 209501(2022).

    Tools

    Get Citation

    Copy Citation Text

    Liang ZHENG, Fan LI, Jiawei WANG, Jianbo LI, Li GAO, Ziyang HE, Xin SHANG, Wangbao YIN, Long TIAN, Wenhai YANG, Yaohui ZHENG. Low Noise Photoelectric Detection Technology for Laser Intensity Noise Suppression in mHz Band[J]. Acta Photonica Sinica, 2023, 52(5): 0552220

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Advanced Science and Technology of Astronomical Optics

    Received: Feb. 6, 2023

    Accepted: Mar. 17, 2023

    Published Online: Jul. 19, 2023

    The Author Email: Long TIAN (tianlong@sxu.edu.cn)

    DOI:10.3788/gzxb20235205.0552220

    Topics