Chinese Journal of Quantum Electronics, Volume. 27, Issue 2, 161(2010)
Scheme for implementing quantum dense coding by using linear optical system
[2] [2] Bennett C H, et al. Communication via one and two-particle operators on Einstein-Podolsky-Rosen states [J]. Phy. Rev. Lett., 1992, 69: 2881-2884.
[3] [3] Mattle K, et al. Dense coding in experimental quantum communication [J]. Phys. Rev. Lett., 1996, 76: 4656-4659.
[4] [4] Hausladen P, et al. Classical information capacity of a quantum channel [J]. Phys. Rev. A, 1996, 54: 1869-1876.
[6] [6] Li X Y, et al. Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam [J]. Phys. Rev. Lett., 2002, 88: 047904.
[7] [7] Fang X M, et al. Experimental implementation of dense coding using nuclear magnetic resonance [J]. Phys. Rev. A, 2000, 61: 022307.
[8] [8] Ye L, Guo G C. Scheme for implementing quantum dense coding in cavity QED [J]. Phys. Rev. A, 2005, 71: 034304.
[9] [9] Ye Y, Wee K C. Teleportation and dense coding with genuine multipartite entanglement [J]. Phys. Rev. Lett., 2006, 96: 060502.
[10] [10] Mozes S, et al. Deterministic dense coding with partially entangled states [J]. Phys. Rev. A, 2005, 71: 012311.
[11] [11] Feng Y, Duan R Y, Ji Z F. Optimal dense coding with arbitrary pure entangled states [J]. Phys. Rev. A, 2006, 74: 012310.
[12] [12] Hao J C, Li C F, Guo G C. Controlled dense coding using the Greenberger-Horne-Zeilinger state [J]. Phys. Rev. A, 2001, 63: 054301.
[13] [13] Hausladen P, Jozsa R, et al. Classical information capacity of a quantum channel [J]. Phys. Rev. A, 1996, 54: 1869-1876.
[14] [14] Hao J C, Li C F, Guo G C. Probabilistic dense coding and teleportation [J]. Phys. Lett. A, 2000, 278: 113-117.
[15] [15] Ye L, Yu L B. Scheme for implementing quantum dense coding using tripartite entanglement in cavity QED [J]. Phys. Lett. A, 2005, 346: 330-336.
[16] [16] Pan J W, Zeilinger A. Greenberger-Horne-Zeilinger-state analyzer [J]. Phys. Rev. A, 1998, 57: 2208-2211.
[17] [17] Zeilinger A, et al. Three-particle entanglements from two entangled pairs [J]. Phys. Rev. Lett., 1997, 78: 3031-3034.
[18] [18] Sagi Y. Scheme for generating Greenberger-Horne-Zeilinger-type states of n photons [J]. Phys. Rev. A, 2003, 68: 042320.
[19] [19] Pittman T B, Jacobs B C, et al. Probabilistic quantum logic operations using polarizing beam splitters [J]. Phys. Rev. A, 2001, 64: 062311.
[20] [20] Nemoto K, Munro W J. Nearly deterministic linear optical controlled-not gate [J]. Phys. Rev. Lett., 2004, 93: 250502.
[21] [21] Munro W J, et al. High-efficiency quantum-nondemolition single-photon-number-resolving detector [J]. Phys. Rev. A, 2005, 71: 033819.
[22] [22] Schmidt H, Imamogdlu A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency [J]. Opt. Lett., 1996, 21: 1936-1938.
[23] [23] Harris S E, Hua L V. Nonlinear optics at low light levels [J]. Phys. Rev. Lett., 1999, 82: 4611-4614.
[24] [24] Kang H, Zhu Y. Observation of large Kerr nonlinearity at low light intensities [J]. Phys. Rev. Lett., 2003, 91: 093601.
[25] [25] Bouwmeester D, Pan J W, et al. Observation of three-photon Greenberger-Home-Zeilinger entanglement [J]. Phys. Rev. Lett., 1999, 82: 1345-1349.
[26] [26] Pan J W, et al. Experimental test of quantum nonlocality in three-photon Greenberger-Home-Zeilinger entanglement [J]. Nature (London), 2000, 403: 515-519.
Get Citation
Copy Citation Text
WAN Hong-bo, YE Liu. Scheme for implementing quantum dense coding by using linear optical system[J]. Chinese Journal of Quantum Electronics, 2010, 27(2): 161
Category:
Received: Apr. 14, 2009
Accepted: --
Published Online: May. 31, 2010
The Author Email: Hong-bo WAN (whb1982910101@sina.com)
CSTR:32186.14.