Journal of the Chinese Ceramic Society, Volume. 50, Issue 3, 642(2022)
Electrocaloric Effect of Ferroelectric Ceramic and Its Application
[1] [1] IBRAHIM D. Refrigeration systems and applications[M]. European Solid State Circuits Conference IEEE, 2017.
[2] [2] LI G. Performance evaluation of low global warming potential working fluids as R134a alternatives for two-stage centrifugal chiller applications[J]. Korean J Chem Eng, 2021, 38(7): 1438-1451.
[3] [3] VELDERS G, FAHEY D W, DANIEL J S, et al. The large contribution of projected HFC emissions to future climate forcing[J]. P Natl Acad Sci USA, 2009, 106(27): 10949-10954.
[4] [4] SHAH N, WEI M, LETSCHERT V, et al. Benefits of leapfrogging to superefficiency and low global warming potential refrigerants in room air conditioning[J]. Lawrence Berkeley Nat Lab, 2015, 1: 1-38.
[5] [5] SHI J, HAN D, LI Z, et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration[J]. Joule, 2019, 3(5): 1200-1225.
[6] [6] HSU K F, LOO S, GUO F, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit[J]. Science, 2004, 303(5659): 818-821.
[7] [7] POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634-638.
[8] [8] RUSS B, GLAUDELL A, URBAN J J, et al. Organic thermoelectric materials for energy harvesting and temperature control[J]. Nat Rev Mater, 2016, 1(10): 1-14.
[9] [9] KITANOVSKI A. Energy applications of magnetocaloric materials[J]. Adv Energy Mater, 2020, 10(10): 1903741.
[10] [10] TAGUCHI Y, SAKAI H, CHOUDHURY D. Magnetocaloric materials with multiple instabilities[J]. Adv Mater, 2017, 29(25): 1606144.
[11] [11] VALANT M. Electrocaloric materials for future solid-state refrigeration technologies[J]. Prog Mater Sci, 2012, 57(6): 980-1009.
[12] [12] MENG Y, PU J H, PEI Q B. Electrocaloric cooling over high device temperature span[J]. Joule, 2021, 5(4): 780-793.
[13] [13] LIU Y, INFANTE I C, LOU X J, et al. Giant room‐temperature elastocaloric effect in ferroelectric ultrathin films[J]. Adv Mater, 2014, 26(35): 6132-6137.
[14] [14] TUEK J, ENGELBRECHT K, ERIKSEN D, et al. A regenerative elastocaloric heat pump[J]. Nat Energy, 2016, 1(10): 1-6.
[15] [15] LI B, KAWAKITA Y, OHIRA-KAWAMURA S, et al. Colossal barocaloric effects in plastic crystals[J]. Nature, 2019, 567(7749): 506-510.
[16] [16] AZNAR A, LLOVERAS P, ROMANINI M, et al. Giant barocaloric effects over a wide temperature range in superionic conductor AgI[J]. Nat Commun, 2017, 8(1): 1-6.
[17] [17] GU H M, CRAVEN B, QIAN X S, et al. Simulation of chip-size electrocaloric refrigerator with high cooling-power density[J]. Appl Phys Lett, 2013, 102(11): 112901.
[18] [18] MOYA X, STERN‐TAULATS E, CROSSLEY S, et al. Giant electrocaloric strength in single‐crystal BaTiO3[J]. Adv Mater, 2013, 25(9): 1360-1365.
[19] [19] BAI Y, DING K, ZHENG G P, et al. Entropy‐change measurement of electrocaloric effect of BaTiO3 single crystal[J]. Phys Status Solidi (a), 2012, 209(5): 941-944.
[20] [20] SEBALD G, SEVEYRAT L, GUYOMAR D, et al. Electrocaloric and pyroelectric properties of 0.75Pb(Mg13Nb23)O3-0.25PbTiO3 single crystals[J]. J Appl Phys, 2006, 100(12): 124112.
[21] [21] LI J T, YIN R, W SU X P, et al. Complex phase transitions and associated electrocaloric effects in different oriented PMN-30PT single crystals under multi-fields of electric field and temperature[J]. Acta Mater, 2020, 182: 250-256.
[23] [23] LIU D L, LI Q, YAN Q F. Electro-caloric effect in a BCZT single crystal[J]. CrystEngComm, 2018, 20(11): 1597-1602.
[24] [24] ZHANG G Z, WENG L X, HU Z Y, et al. Nanoconfinement-Induced Giant Electrocaloric Effect in Ferroelectric Polymer Nanowire Array Integrated with Aluminum Oxide Membrane to Exhibit Record Cooling Power Density[J]. Adv Mater, 2019, 31(8): 1806642.
[25] [25] ZHANG G Z, LI Q, GU H M, et al. Ferroelectric polymer nanocomposites for room‐temperature electrocaloric refrigeration[J]. Adv Mater, 2015, 27(8): 1450-1454.
[26] [26] ZHANG G Z, ZHANG X S, HUANG H B, et al. Toward wearable cooling devices: highly flexible electrocaloric Ba0.67Sr0.33TiO3 nanowire arrays[J]. Adv Mater, 2016, 28(24): 4811-4816.
[27] [27] LI Q, ZHANG G Z, ZHANG X S, et al. Relaxor ferroelectric‐based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy[J]. Adv Mater, 2015, 27(13): 2236-2241.
[28] [28] CHEN Y Q, QIAN J F, YU J Y, ET AL. An all-scale hierarchical architecture induces colossal room-temperature electrocaloric effect at ultralow electric field in polymer nanocomposites[J]. Adv Mater, 2020, 32(30): 1907927.
[29] [29] HEGENBARTH E. Studies of the electrocaloric effect of ferroelectric ceramics at low temperatures[J]. Cryogenics, 1961, 1(4): 242-243.
[30] [30] HEGENBARTH E. Dielektrische und kalorische Untersuchungen an ferroelektrischen Keramiken bei tiefen Temperaturen[J]. Phys Stat Sol (b), 1962, 2(11): 1544-1551.
[31] [31] KARCHEVSKII A J. Electrocaloric effect in polycrystalline barium titanate[J]. Sov Phys Sol Stat, 1962, 3: 2249-2254.
[32] [32] THACHER P D. Electrocaloric effects in some ferroelectric and antiferroelectric Pb(Zr, Ti)O3 compounds[J]. J Appl Phys, 1968, 39(4): 1996-2002.
[33] [33] SINYAVSKY Y V, BRODYANSKY V M. Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body[J]. Ferroelectrics, 1992, 131(1): 321-325.
[34] [34] BIRKS E H. The electrocaloric effect in Pb(Sc0.5Nb0.5)O3 ceramic[J]. Phys Stat Sol A, 1986, 94(2): 523-527.
[35] [35] SHEBANOV L A, BIRKS E H, BORMAN K Y. Electrocaloric effect and structure of PbSc0.5Ta0.5O3-PbSc0.5Nb0.5O3 solid solutions[J]. Fiz Tverd Tela, 1988, 30(8): 2464-2469.
[36] [36] MISCHENKO A S, ZHANG Q, SCOTT J F, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3[J]. Science, 2006, 311(5765): 1270-1271.
[37] [37] BAI Y, ZHENG G P, DING K, et al. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film[J]. J Appl Phys, 2011, 110(9): 1983.
[40] [40] NAIR B, USUI T, CROSSLEY S, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range[J]. Nature, 2019, 575(7783): 468-472.
[41] [41] LI X Y, QIAN X S, GU H M, et al. Giant electrocaloric effect in ferroelectric poly (vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition[J]. Appl Phys Lett, 2012, 101(13): 132903.
[42] [42] GOUPIL F L, BERENOV A, AXELSSON A K, et al. Direct and indirect electrocaloric measurements on -PbMg1/3Nb2/3O3- 30PbTiO3 single crystals[J]. J Appl Phys, 2012, 111(12): 124109.
[43] [43] GERSON R, MARSHALL T C. Dielectric breakdown of porous ceramics[J]. J Appl Phys, 1959, 30(11): 1650-1653.
[44] [44] LIU Z K, LI X Y, ZHANG Q M. Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics[J]. Appl Phys Lett, 2012, 101(8): 082904.
[45] [45] Feng Z Y, SHI D Q, DOU S X. Large electrocaloric effect in highly (001)-oriented 0.67PbMg1/3Nb2/3O3-0.33PbTiO3 thin films[J]. Solid State Commun, 2011, 151(2): 123-126.
[46] [46] MISCHENKO A S, ZHANG Q, WHATMORE R W, et al. Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg13Nb23O3-0.1PbTiO3 near room temperature[J]. Appl Phys Lett, 2006, 89(24): 242912.
[47] [47] CORREIA T M, YOUNG J S, WHATMORE R W, et al. Investigation of the electrocaloric effect in a PbMg2/3Nb1/3O3-PbTiO3 relaxor thin film[J]. Appl Phys Lett, 2009, 95(18): 182904.
[48] [48] LI B, WANG J B, ZHONG X L, et al. Enhancing the electrocaloric effect of PbZr0.4Ti0.6O3/PbTiO3 superlattices via composition tuning[J]. Europhys Lett, 2011, 95(6): 67004.
[49] [49] GENG W P, LIU Y, MENG X J, et al. Giant negative electrocaloric effect in antiferroelectric La‐doped Pb(ZrTi)O3 thin films near room temperature[J]. Adv Mater, 2015, 27(20): 3165-3169.
[50] [50] CHEN C, WANG S C, ZHANG T D, et al. Designing coexisting multi-phases in PZT multilayer thin films: an effective way to induce large electrocaloric effect[J]. RSC Adv, 2020, 10(11): 6603-6608.
[51] [51] SHIRSATH S E, CAZORLA C, LU T, et al. Interface-charge induced giant electrocaloric effect in lead free ferroelectric thin film bilayers[J]. Nano Lett, 2019, 20(2): 1262-1271.
[52] [52] GUO F, WU X, LU Q S, et al. Near room temperature giant negative and positive electrocaloric effects coexisting in lead-free BaZr0.2Ti0.8O3 relaxor ferroelectric films[J]. Ceram Int, 2018, 44(3): 2803-2808.
[54] [54] AKCAY G, ALPAY S P, ROSSETTI JR G A, et al. Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films[J]. J Appl Phys, 2008, 103(2): 024104.
[55] [55] ZHANG X, WANG J B, LI B, et al. Sizable electrocaloric effect in a wide temperature range tuned by tensile misfit strain in BaTiO3 thin films[J]. J Appl Phys, 2011, 109(12): 126102.
[56] [56] LI B, ZHANG X, WANG J B, et al. Giant electrocaloric effect of PbTiO3 thin film tuned in a wide temperature range by the anisotropic misfit strain[J]. Mech Res Commun, 2014, 55: 40-44.
[57] [57] MARATHE M, EDERER C. Electrocaloric effect in BaTiO3: a first-principles-based study on the effect of misfit strain[J]. Appl Phys Lett, 2014, 104(21): 212902.
[58] [58] HE Y, LI X M, GAO X D, et al. Enhanced electrocaloric properties of PMN-PT thin films with LSCO buffer layers[J]. Funct Mater Lett, 2011, 4(01): 45-48.
[59] [59] FENG Z Y, SHI D Q, ZENG R, et al. Large electrocaloric effect of highly (100)-oriented 0.68PbMg1/3Nb2/3O3-0.32PbTiO3 thin films with a Pb(Zr0.3Ti0.7)O3/PbOx buffer layer[J]. Thin Solid Films, 2011, 519(16): 5433-5436.
[60] [60] PENG B L, ZHANG Q, LYU Y N, et al. Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range[J]. Nano Energy, 2018, 47: 285-293.
[61] [61] WANG D, YUAN G L, HAO G Q, et al. All-inorganic flexible piezoelectric energy harvester enabled by two-dimensional mica[J]. Nano Energy, 2018, 43: 351-358.
[62] [62] XU X W, LIU W L, LI Y, et al. Flexible mica films for high-temperature energy storage[J]. J Materiomics, 2018, 4(3): 173-178.
[63] [63] WANG D, CHEN X, YUAN G L, et al. Toward artificial intelligent self-cooling electronic skins: Large electrocaloric effect in all-inorganic flexible thin films at room temperature[J]. J Materiomics, 2019, 5(1): 66-72.
[64] [64] SHEN B Z, LI Y, HAO X H. Multifunctional all-inorganic flexible capacitor for energy storage and electrocaloric refrigeration over a broad temperature range based on PLZT 9/65/35 thick films[J]. ACS Appl Mater Interf, 2019, 11(37): 34117-34127.
[65] [65] YANG C H, HAN Y J, FENG C, et al. Toward multifunctional electronics: flexible NBT-based film with a large electrocaloric effect and high energy storage property[J]. ACS Appl Mater Interf, 2020, 12(5): 6082-6089.
[66] [66] QIU J H, JIANG Q. Film thickness dependence of electrocaloric effect in epitaxial Ba0.6Sr0.4TiO3 thin films[J]. J Appl Phys, 2008, 103(3): 034119.
[67] [67] QIU J H, JIANG Q. Orientation dependence of the electrocaloric effect of ferroelectric bilayer thin films[J]. Solid State Commun, 2009, 149(37-38): 1549-1552.
[68] [68] Y LI, S P LIN, Y J WANG, et al. Bending influence of the electrocaloric effect in a ferroelectric/paraelectric bilayer system[J]. J Phys D: Appl Phys, 2016, 49: 065305.
[69] [69] WU M, SONG D S, GUO M Y, et al. Remarkably enhanced negative electrocaloric effect in PbZrO3 thin film by interface engineering[J]. ACS Appl Mate Interf, 2019, 11(40): 36863-36870.
[70] [70] YANG C H, FENG C, LV P P, et al. Coexistence of giant positive and large negative electrocaloric effects in lead-free ferroelectric thin film for continuous solid-state refrigeration[J]. Nano Energy, 2021: 106222.
[75] [75] YANG B, HAN X, DING K, et al. Combined effects of diffuse phase transition and microstructure on the electrocaloric effect in Ba1-xSrxTiO3 ceramics[J]. Appl Phys Lett, 2013, 103(16): 1270.
[76] [76] ZHANG C, DU Q P, LI W R, et al. High electrocaloric effect in barium titanate-sodium niobate ceramics with core-shell grain assembly[J]. J Materiomics, 2020, 6(3): 618-627.
[77] [77] SRIKANTH K S, PATEL S, VAISH R. Enhanced electrocaloric effect in glass-added 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics[J]. J Aust Ceram Soc, 2017, 53: 523-529.
[78] [78] WANG S B, DAI G Z, YAO Y B, et al. Direct and indirect measurement of large electrocaloric effect in B2O3-ZnO glass modified Ba0.65Sr0.35TiO3 bulk ceramics[J]. Scr Mater, 2021, 193: 59-63.
[79] [79] ZHANG D D, ZHANG X L, LI X J, et al. Effect of BaO-CaO-SiO2 addition on dielectric and electrocaloric properties of lead-free 0.2Ba(Ti0.9Sn0.1)O3-0.8Ba(Zr0.18Ti0.82)O3 bulk ceramics[J]. Solid State Sci, 2021, 119: 106684.
[80] [80] QIAN X S, YE H J, ZHANG Y T, et al. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics[J]. Adv Funct Mater, 2014, 24(9): 1300-1305.
[81] [81] WANG Y T, LI J N, YUAN R H, et al. Enhanced electrocaloric effect in BaSn/TiO3 ceramics by addition of CuO[J]. J Alloys Compd, 2020, 851: 156772.
[82] [82] KUMAR R, SINGH S. Enhanced electrocaloric effect in lead-free 0.9(K0.5Na0.5)NbO3-0.1Sr(Sc0.5Nb0.5)O3 ferroelectric nanocrystalline ceramics[J]. J Alloys Compd, 2017, 723(5): 589-594.
[84] [84] XIAO Q L, CHEN T T, YONG J W, et al. Enhanced electrocaloric effects in spark plasma-sintered Ba0.65Sr0.35TiO3-based ceramics at room temperature[J]. J Am Ceram Soc, 2013, 96(4): 1021-1023.
[85] [85] LIU X Q, CHEN T T, FU M S, et al. Electrocaloric effects in spark plasma sintered Ba0.7Sr0.3TiO3-based ceramics: Effects of domain sizes and phase constitution[J]. Ceram Int, 2014, 40(7): 11269-11276.
[86] [86] DAI G Z, WANG S B, HUANG G H, et al. Direct and indirect measurement of large electrocaloric effect in barium strontium titanate ceramics[J]. Int J Appl Ceram Technol, 2019, 17(3): 1354-1361.
[87] [87] ZHANG G Z, CHEN Z B, FAN B Y, et al. Large enhancement of the electrocaloric effect in PLZT ceramics prepared by hot-pressing[J]. APL Mater, 2016, 4(6): 064103.
[88] [88] SAWAGUCHI E, Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3[J]. J Phys Soc Jpn, 1953, 8(5): 615-629.
[89] [89] HAERTLING, G H. PLZT electrooptic materials and applications—a review[J]. Ferroelectrics, 1987, 75(1): 25-55.
[90] [90] LU B, LI P L, TANG Z H, et al. Large electrocaloric effect in relaxor ferroelectric and antiferroelectric lanthanum doped lead zirconate titanate ceramics[J]. Sci Rep, 2017, 7: 45335.
[91] [91] MENDEZ-GONZLEZ Y, PELIZ-BARRANCO A, YANG T Q, et al. Enhanced electrocaloric effect in La-based PZT antiferroelectric ceramics[J]. Appl Phys Lett, 2018, 112(12): 122904.
[92] [92] NIU Z H, JIANG Y P,TANG X G, et al. Giant negative electrocaloric effect in B-site nonstoichiometric (Pb0.97La0.02)(Zr0.95Ti0.05)1+yO3 antiferroelectric ceramics[J]. Mater Res Lett, 2018, 6(7): 384-389.
[93] [93] BERLINCOURT D A. Transducers using forced transitions between ferroelectric and antiferroelectric states[J]. IEEE Trans Sonics Ultrason, 1966, 13(4): 116-124.
[94] [94] XU Z P, FAN Z M, LIU X M, et al. Impact of phase transition sequence on the electrocaloric effect in Pb(Nb,Zr,Sn,Ti)O3 ceramics[J]. Appl Phys Lett, 2017, 110(8): 603.
[95] [95] NOVAK N, WEYLAND F, PATEL S, et al. Interplay of conventional with inverse electrocaloric response in (Pb,Nb)(Zr,Sn,Ti)O3 antiferroelectric materials[J]. Phys Rev B, 2018, 97(9): 094113.
[96] [96] ZHUO F P, LI Q, GAO J H, et al. Giant negative electrocaloric effect in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectrics Near Room Temperature[J]. ACS Appl Mater Interf, 2018, 10(14): 11747-11755.
[97] [97] ZHAO Y, HAO X H, ZHANG Q, et al. A giant electrocaloric effect of a Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film at room temperature[J]. J Mater Chem C, 2015, 3: 1694-1699.
[98] [98] ZHAO Y, GAO H C, HAO X H, et al. Orientation-dependent energy-storage performance and electrocaloric effect in PLZST antiferroelectric thick films[J]. MRS Bull, 2016, 84: 177-184.
[99] [99] PARK S E, MULVIHILL M L, RISCH G, et al. The effect of growth conditions on the dielectric properties of Pb(Zn1/3Nb2/3)O3 single crystals[J]. Jpn J Appl Phys, 1997, 82(4): 1804-1811.
[100] [100] BOKOV A A, YE Z G. Recent progress in relaxor ferroelectrics with perovskite structure[J]. J Mater Sci, 2006, 41(1): 31-52.
[101] [101] SHEBANOV L A, KAPOSTIN P P, BIRKS E H, et al. Some peculiarities in the rearrangement of the crystal structure and electrocaloric effect in single crystal of lead magnoniobate in the region of the diffuse phase transition[J]. Kristallografiya, 1986, 31: 317-320.
[102] [102] KIAT J M, DKHIL B. Handbook of advanced dielectric, piezoelectric and ferroelectric materials[M]. Cambridge:Woodhead Publishing Limited, CRC Press, 2008.
[103] [103] YE Z G, DONG M. Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1-x) Pb(Mg1/3Nb2/3) O3-xPbTiO3 single crystals[J]. J Appl Phys, 2000, 87(5): 2312-2319.
[104] [104] LIU S B, LI Y Q. Research on the electrocaloric effect of PMN/PT solid solution for ferroelectrics MEMS microcooler[J]. Mater Sci Eng: B, 2004, 113(1): 46-49.
[105] [105] KRIAA I, ABDELMOULA N, MAALEJ A, et al. Study of the electrocaloric effect in the relaxor ferroelectric ceramic 0.75PMN- 0.25PT[J]. J Electron Mater, 2015, 44(12): 4852-4856.
[107] [107] DE KROON A P, DUNN S C, WHATMORE R W. Piezo and pyroelectric properties of lead scandium tantalate thin films[J]. Integr Ferroelectr, 2001, 35(1-4): 209-218.
[108] [108] FUFLYIGIN V, SALLEY E, VAKHUTINSKY P, et al. Free-standing films of PbSc0.5Ta0.5O 3 for uncooled infrared detectors[J]. Appl Phys Lett, 2001, 78(3): 365-367.
[109] [109] HUANG Z, DONOHUE P P, ZHANG Q, et al. Comparative microstructure and electrical property studies of lead scandium tantalate thin films as prepared by LDCVD, sol-gel and sputtering techniques[J]. J Phys D: Appl Phys, 2003, 36(3): 270-279.
[110] [110] TODD M A, DONOHUAE P P, HARPER M A C, et al. Sputtered lead scandium tantalate thin films for dielectric bolometer mode thermal detector arrays[J]. Integr Ferroelectr, 2001, 35(1-4): 115-125.
[111] [111] WANG Y D, ZHANG Z Y, USUI T, et al. A high-performance solid-state electrocaloric cooling system[J]. Science, 2020, 370(6512): 129-133.
[112] [112] TORELL A, LHERITIER P, USUI T, et al. Giant temperature span in electrocaloric regenerator[J]. Science, 2020, 370: 125-129.
[113] [113] SETTER N, CROSS L E. The role of B‐site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics[J]. J Appl Phys, 1980, 51(8): 4356-4360.
[114] [114] SHEBANOVS L, BORMAN K, LAWLESS W N, et al. Electrocaloric effect in some perovskite ferroelectric ceramics and multilayer capacitors[J]. Ferroelectrics, 2002, 273(1): 137-142.
[115] [115] SHEBANOV L, BORMAN K. On lead-scandium tantalate solid solutions with high electrocaloric effect[J]. Ferroelectrics, 1992, 127(1): 143-148.
[116] [116] BAI Y, HAN X, ZHENG X C, et al. Both high reliability and giant electrocaloric strength in BaTiO3 ceramics[J]. Sci Rep, 2013, 3(1): 1-5.
[118] [118] HAN F, BAI Y, QIAO L J, et al. A systematic modification of the large electrocaloric effect within a broad temperature range in rare-earth doped BaTiO3 ceramics[J]. J Mater Chem C, 2016, 4(9): 1842-1849.
[123] [123] SINGH G, TIWARI V S, GUPTA P K. Thermal stability of piezoelectric coefficients in (Ba1-xCax)(Zr0.05Ti0.95)O3: A lead-free piezoelectric ceramic[J]. Appl Phys Lett, 2013, 102(16): 934.
[124] [124] JIAN X D, LU B, LI D D, et al. Enhanced electrocaloric effect in Sr2+-modified lead-free BaZrxTi1-xO3 ceramics[J]. ACS Appl Mater Interfaces, 2019, 11(22): 20167-20173.
[125] [125] ZHAO C L, YANG J L, HUANG Y L, et al. Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions[J]. J Mater Chem A, 2019, 7: 25526.
[126] [126] JONES G O, THOMAS P A. The tetragonal phase of Na0.5Bi0.5TiO3 a new variant of the perovskite structure[J]. Acta Cryst, 2000, 56(3): 426-430.
[127] [127] ZHENG X C, ZHENG G P, LIN Z, et al. Electro-caloric behaviors of lead-free Bi0.5Na0.5TiO3-BaTiO3 ceramics[J]. J Electroceram, 2012, 28(1): 20-26.
[128] [128] CAO W P, LI W L, XU D, et al. Enhanced electrocaloric effect in lead-free NBT-based ceramics[J]. Ceram Int, 2014, 40(7): 9273-9278.;
[129] [129] TURKI O, SLIMANI A, SEVEYRAT L, et al. Structural, dielectric, ferroelectric, and electrocaloric properties of 2% Gd2O3 doping (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics[J]. J Appl Phys, 2016, 120(5): 111-115.
[131] [131] GOUPIL Fl, BENNETT J, AXELSSON A K, et al. Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics[J]. Appl Phys Lett, 2015, 107(17): 172903.
[132] [132] CAO W P, LI W L, DAI X F, et al. Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics[J]. J Eur Ceram Soc, 2016, 36(3): 593-600.
[133] [133] LI F, LI J H, ZHAI J W, et al. Influence of structural evolution on electrocaloric effect in Bi0.5Na0.5TiO3-SrTiO3 ferroelectric ceramics[J]. J Appl Phys, 2018, 124(16): 164108.
[134] [134] LI F, CHEN G R, LIU X, et al. Phase-composition and temperature dependence of electrocaloric effect in lead-free Bi0.5Na0.5TiO3- BaTiO3-(Sr0.7Bi0.2)TiO3 ceramics[J]. J Eur Ceram Soc, 2017, 37(15): 4732-4740.
[135] [135] HIRUMA Y, IMAI Y, WATANABE Y, et al. Large electrostrain near the phase transition temperature of (Bi0.5Na0.5) TiO3-SrTiO3 ferroelectric ceramics[J]. Appl Phys Lett, 2008, 92(26): 262904.
[136] [136] WANG K, LI J F. Domain engineering of lead-free Li-modied (K,Na)NbO3 Polycrystals with highly enhanced piezoelectricity[J]. Adv Funct Mater, 2010, 20: 1924-1929.
[137] [137] WANG K, LI J F. Piezoelectric properties of low-temperature sintered Li-modified (Na, K)NbO3 lead-free ceramics[J]. Appl Phys Lett, 2008, 93: 092904.
[139] [139] LI J T, BAI Y, QIN S Q, et al. Direct and indirect characterization of electrocaloric effect in (Na, K) NbO3 based lead-free ceramics[J]. Appl Phys Lett, 2016, 109(16): 162902.
[140] [140] YANG J L, HAO X H. Electrocaloric effect and pyroelectric performance in (K,Na)NbO3 based lead-free ceramics[J]. J Am Ceram Soc, 2019, 102(11): 6817-6826.
[141] [141] YANG J L, ZHAO Y, LOU X J, et al. Synergistically optimizing electrocaloric effects and temperature span in KNN-based ceramics utilizing a relaxor multiphase boundary[J]. J Mater Chem C, 2020, 8: 4030-4039
[142] [142] WANG X J, WU J G, DKHIL B, et al. Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics[J]. Appl Phys Lett, 2017, 110(6): 063904.
[143] [143] MOHAMED A, MONEIM Z, MANAL B, et al. Large direct and inverse electrocaloric effects in lead-free Dy doped 0.975KNN- 0.025NBT ceramics[J]. Ceram Int, 2021, Article in press.
[144] [144] ZHANG N, ZHENG T, ZHAO C L, et al. Enhanced electrocaloric effect in compositional driven potassium sodium niobate-based relaxor ferroelectrics[J]. J Mater Res, 2021, 36(5): 1142-1152.
[145] [145] LI J L, SHEN Z H, CHEN X H. et al, Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications[J]. Nat Mater, 2020, 19: 999-1005.
[146] [146] HOU Y, YANG L, QIAN X S, et al. Enhanced electrocaloric effect in composition gradient bilayer thick films[J]. Appl Phys Lett, 2016, 108(13): 133501.
[147] [147] HOU Y, YANG L, ZHAO X B, et al. Sintering aids modified electrocaloric response in BaZr0.2Ti0.8O3 bilayer films[J]. J Alloys Compd, 2017, 724: 8-13.
[148] [148] LI J L, CHANG Y F, YANG S, et al. Lead-free bilayer thick films with giant electrocaloric effect near room temperature[J]. ACS Appl Mater Interf, 2019, 11(26): 23346-23352.
[149] [149] CROSSLEY S, USUI T, NAIR B, et al. Direct electrocaloric measurement of 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 films using scanning thermal microscopy[J]. Appl Phys Lett, 2016, 108(3): 032902
[150] [150] FAN P Y, LIU K, MA W G, et al. Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators[J]. J Materiomics, 2020, 7(3): 508-544.
[151] [151] KAR-NARAYAN S, MATHUR N D. Predicted cooling powers for multilayer capacitors based on various electrocaloric and electrode materials[J]. Appl Phys Lett, 2009, 95(24): 242903.
[152] [152] USUI T, HIROSE S, ANDO A, et al. Effect of inactive volume on thermocouple measurements of electrocaloric temperature change in multilayer capacitors of 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3[J]. J Phys D Appl Phys: A Eur J, 2017, 50(42): 424002.
[153] [153] LIU Y, DKHIL B, DEFAY E. Spatially resolved imaging of electrocaloric effect and the resultant heat flux in multilayer capacitors[J]. ACS Energy Lett, 2016, 1(3): 521-528.
[154] [154] HIROSE S, USUI T, CROSSLEY S, et al. Progress on electrocaloric multilayer ceramic capacitor development[J]. APL Mater, 2016, 4(6): 27-16.
[155] [155] SINYAVSKY Y V, PASHKOV N D, GOROVOY Y M, et al. The optical ferroelectric ceramic as working body for electrocaloric refrigeration[J]. Ferroelectrics, 1989, 90(1): 213-217.
[156] [156] SINYAVSKY Y V, LUGANSKY G E, PASHKOV N D. Electrocaloric refrigeration: Investigation of a model and prognosis of mass and efficiency indexes[J]. Cryogenics, 1992, 32: 28-31.
[157] [157] LI Q, SHI J Y, HAN D L, et al. Concept design and numerical evaluation of a highly efficient rotary electrocaloric refrigeration device[J]. Appl Therm Eng, 2021, 190: 116806.
[158] [158] SHI J Y, LI Q, GAO T Y, et al. Numerical evaluation of a kilowatt-level rotary electrocaloric refrigeration system[J]. Int J Refrig, 2021, 121: 279-288.
[159] [159] WANG Y D, SMULLIN S J, SHERIDAN M J, et al. A heat-switch-based electrocaloric cooler[J]. Appl Phys Lett, 2015, 107(13): 134103.
[161] [161] BLUNEBTHAL P, RAATZ A. Classification of electrocaloric cooling device types[J]. Europhys Lett, 2016, 115(1): 17004.
[162] [162] EPSTEIN R I, MALLOY K J. Electrocaloric devices based on thin-film heat switches[J]. J Appl Phys, 2009, 106(6): 064509.
[163] [163] LI J T, QIN S Q, BAI Y, et al. Flexible control of positive and negative electrocaloric effects under multiple fields for a giant improvement of cooling capacity[J]. Appl Phys Lett, 2017, 111(9): 093901.
[164] [164] LU B, YAO Y B, JIAN X D, et al. Enhancement of the electrocaloric effect over a wide temperature range in PLZT ceramics by doping with Gd3+ and Sn4+ ions[J]. J Eur Ceram Soc, 2019, 39(4): 1093-1102.
[165] [165] DAI G Z, WANG S B, HUANG G H, et al. Direct and indirect measurement of large electrocaloric effect in barium strontium titanate ceramics[J]. Int J Appl Ceram Technol, 2020, 17(3): 1354-1361.
[166] [166] GREINER A, MOLIN C, NEUBERT H, et al. Direct measurement of the electrocaloric temperature change in multilayer ceramic components using resistance-welded thermocouple wires[J]. Energy Technol. 2018, 6(8): 1535-1542.
[167] [167] NARAYAN S K, MATHUR N D. Direct and indirect electrocaloric measurements using multilayer capacitors[J]. J Phys D: Appl Phys, 2010, 43(3): 032002.
[168] [168] NARAYAN S K, CROSSLEY S, MOYA X, et al. Direct electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging[J]. Appl Phys Lett, 2013, 102(3): 032903.
[169] [169] ZHANG T, QIAN X S, GU H M, et al. An electrocaloric refrigerator with direct solid to solid regeneration[J]. Appl Phys Lett, 2017, 110(24): 243503.
[170] [170] YANG J L, ZHAO Y, ZHU L P, et al. Enhanced electrocaloric effect of relaxor potassium sodium niobate lead-free ceramic via multilayer structure[J]. Scr Mater, 2021, 193(1): 97-102.
[171] [171] ZHU L P, MENG X J, ZHU J Y, et al. Enhanced room temperature electrocaloric effect in lead-free relaxor ferroelectric NBT ceramics with excellent temperature stability[J]. J Alloys Compd, 2021, 892(5): 162241.
Get Citation
Copy Citation Text
ZHANG Chao, CEN Fangjie, XIAO Wenrong, DU Quanpei, ZOU Kailun, JIANG Shenglin, ZHANG Guangzu. Electrocaloric Effect of Ferroelectric Ceramic and Its Application[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 642
Special Issue:
Received: Sep. 9, 2021
Accepted: --
Published Online: Nov. 11, 2022
The Author Email: