Optics and Precision Engineering, Volume. 30, Issue 11, 1337(2022)
Magnetic field analysis and active compensation system for strontium optical lattice clock in space
[1] C GREBING, A AL-MASOUDI, S DÖRSCHER et al. Realization of a timescale with an accurate optical lattice clock. Optica, 3, 563-569(2016).
[2] R LE TARGAT, L LORINI, COQ Y LE et al. Experimental realization of an optical second with strontium lattice clocks. Nature Communications, 4, 2109(2013).
[3] E OELKER, R B HUTSON, C J KENNEDY et al. Demonstration of 4.8×10-17 stability at 1 s for two independent optical clocks. Nature Photonics, 13, 714-719(2019).
[4] T BOTHWELL, D KEDAR, E OELKER et al. JILA SrI optical lattice clock with uncertainty of 2.0×10-18. Metrologia, 56(2019).
[5] S BLATT, A D LUDLOW, G K CAMPBELL et al. Optical lattice clocks. Physical Review Letters, 100, 140801(2008).
[6] R M GODUN, P B R NISBET-JONES, J M JONES et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants. Physical Review Letters, 113, 210801(2014).
[7] N HUNTEMANN, B LIPPHARDT, C TAMM et al. Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks. Physical Review Letters, 113, 210802(2014).
[8] S KOLKOWITZ, I PIKOVSKI, N LANGELLIER et al. Gravitational wave detection with optical lattice atomic clocks. Physical Review D, 94, 124043(2016).
[9] A DEREVIANKO, M POSPELOV. Hunting for topological dark matter with atomic clocks. Nature Physics, 10, 933-936(2014).
[10] F RIEHLE. Frequency Standards: Basics and Applications, 387-415(2004).
[11] F GUO, W TAN, C H ZHOU et al. A proof-of-concept model of compact and high-performance 87Sr optical lattice clock for space. AIP Advances, 11, 125116(2021).
[12] L LI, J W JI, W REN et al. Automatic compensation of magnetic field for a rubidium space cold atom clock. Chinese Physics B, 25(2016).
[13] [13] 13孔德欢. 可搬运锶光钟性能评估及空间站锶光钟预研究[D]. 西安: 中国科学院大学(中国科学院国家授时中心), 2021. doi: 10.7498/aps.70.20201204KONGD H. Evaluation of the Transportable Strontium Optical Clock and Pre-research of the Optical Clock for Space Station[D]. Xi'an: National Time Service Center, Chinese Academy of Sciences, 2021. (in Chinese). doi: 10.7498/aps.70.20201204
[14] [14] 14任洁, 卢晓同, 王叶兵, 等. 锶原子光钟闭环控制系统的设计与实现[J]. 光学 精密工程, 2018, 26(10): 2546-2554. doi: 10.3788/OPE.20182610.2546RENJ, LUX T, WANGY B, et al. Design and realization of an auto-control system for the closed-loop operation of a strontium atomic clock[J]. Opt. Precision Eng., 2018, 26(10): 2546-2554. (in Chinese). doi: 10.3788/OPE.20182610.2546
[15] M BOYD. M(2002).
[16] L LIU, D S LÜ, W B CHEN et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms. Nature Communications, 9, 2760(2018).
[17] Z X LIANG, Z D ZHANG, W M LIU. Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. Physical Review Letters, 94(2005).
[18] C CHIN, R GRIMM, P JULIENNE et al. Feshbach resonances in ultracold gases. Reviews of Modern Physics, 82, 1225-1286(2010).
[19] A C JI, W M LIU, J L SONG et al. Dynamical creation of fractionalized vortices and vortex lattices. Physical Review Letters, 101(2008).
[20] A C JI, Q SUN, X C XIE et al. Josephson effect for photons in two weakly linked microcavities. Physical Review Letters, 102(2009).
Get Citation
Copy Citation Text
Jie REN, Wei TAN, Feng GUO, Hui LIU, Hong CHANG. Magnetic field analysis and active compensation system for strontium optical lattice clock in space[J]. Optics and Precision Engineering, 2022, 30(11): 1337
Category: Micro/Nano Technology and Fine Mechanics
Received: Dec. 22, 2021
Accepted: --
Published Online: Jul. 4, 2022
The Author Email: LIU Hui (liuhui_gzs@nwu.edu.cn), CHANG Hong (changhong@ntsc.ac.cn)