Chinese Optics Letters, Volume. 19, Issue 11, 110603(2021)

Gain and laser performance of heavily Er-doped silica fiber fabricated by MCVD combined with the sol-gel method

Qiubai Yang1,2, Yan Jiao2, Chunlei Yu2,3、*, Chongyun Shao2, Fengguang Lou2, Shikai Wang2, Lei Zhang2, Qiuhong Yang1, and Lili Hu2,3、**
Author Affiliations
  • 1School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • 2Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • show less
    References(33)

    [1] C. C. V. Philippov, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson. High-energy in-fiber pulse amplification for coherent lidar applications. Opt. Lett., 29, 2590(2004).

    [2] W. Lee, J. Geng, S. Jiang, A. W. Yu. 1.8 mJ, 3.5 kW single-frequency optical pulses at 1572 nm generated from an all-fiber MOPA system. Opt. Lett., 43, 2264(2018).

    [3] C. Lei, H. Feng, Y. Messaddeq, S. LaRochelle. Investigation of C-band pumping for extended L-band EDFAs. J. Opt. Soc. Am. B, 37, 2345(2020).

    [4] J. L. Y. Liu, W. Chen. Eye-safe, single-frequency pulsed all-fiber laser for Doppler wind lidar. Chin. Opt. Lett., 9, 090604(2011).

    [5] S. Han, H. Jang, S. Kim, Y.-J. Kim, S.-W. Kim. MW peak power Er/Yb-doped fiber femtosecond laser amplifier at 1.5 µm center wavelength. Laser Phys. Lett., 14, 080002(2017).

    [6] V. Kuhn, D. Kracht, J. Neumann, P. Weßels. Er-doped single-frequency photonic crystal fiber amplifier with 70 W of output power for gravitational wave detection. Proc. SPIE, 8237, 82371G(2012).

    [7] O. Varona, M. Steinke, J. Neumann, D. Kracht. All-fiber, single-frequency, and single-mode Er3+:Yb3+ fiber amplifier at 1556 nm core-pumped at 1018 nm. Opt. Lett., 43, 2632(2018).

    [8] M. M. Khudyakov, D. S. Lipatov, A. N. Gur’yanov, M. M. Bubnov, M. E. Likhachev. Highly efficient 3.7 kW peak-power single-frequency combined Er/Er-Yb fiber amplifier. Opt. Lett., 45, 1782(2020).

    [9] Z. Guo, Q. Hao, J. Peng, H. Zeng. Environmentally stable Er-fiber mode-locked pulse generation and amplification by spectrally filtered and phase-biased nonlinear amplifying long-loop mirror. High Power Laser Sci. Eng., 7, e47(2019).

    [10] J. Bogusławski, G. Soboń, R. Zybała, J. Sotor. Towards an optimum saturable absorber for the multi-gigahertz harmonic mode locking of fiber lasers. Photon. Res., 7, 1094(2019).

    [11] X. Chen, Y. Gao, J. Jiang, M. Liu, A. Luo, Z. Luo, W. Xu. High-repetition-rate pulsed fiber laser based on virtually imaged phased array. Chin. Opt. Lett., 18, 071403(2020).

    [12] A. Martinez, S. Yamashita. Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. Opt. Express, 19, 6155(2011).

    [13] A. M. Smirnov, A. P. Bazakutsa, Y. K. Chamorovskiy, I. A. Nechepurenko, A. V. Dorofeenko, O. V. Butov. Thermal switching of lasing regimes in heavily doped Er3+ fiber lasers. ACS Photon., 5, 5038(2018).

    [14] S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, Z. H. Jiang. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm. Opt. Express, 18, 1249(2010).

    [15] N. Boetti, D. Pugliese, E. Ceci-Ginistrelli, J. Lousteau, D. Janner, D. Milanese. Highly doped phosphate glass fibers for compact lasers and amplifiers: a review. Appl. Sci., 7, 1295(2017).

    [16] X. Gao, Z. Zhao, Z. Cong, G. Gao, A. Zhang, H. Guo, G. Yao, Z. Liu. Stable 5-GHz fundamental repetition rate passively SESAM mode-locked Er-doped silica fiber lasers. Opt. Express, 29, 9021(2021).

    [17] B. J. Ainslie. A review of the fabrication and properties of erbium-doped fibers for optical amplifiers. J. Lightwave Technol., 9, 220(1991).

    [18] E. Maurice, G. Monnom, B. Dussardier, D. B. Ostrowsky. Clustering-induced nonsaturable absorption phenomenon in heavily erbium-doped silica fibers. Opt. Lett., 20, 2487(1995).

    [19] D. Boivin, T. Föhn, E. Burov, A. Pastouret, C. Gonnet, O. Cavani, C. Collet, S. Lempereur. Quenching investigation on new erbium doped fibers using MCVD nanoparticle doping process. Proc. SPIE, 7580, 75802B(2010).

    [20] P. G. Rojas Hernandez, M. Belal, C. Baker, S. Pidishety, Y. Feng, E. J. Friebele, L. B. Shaw, D. Rhonehouse, J. Sanghera, J. Nilsson. Efficient extraction of high pulse energy from partly quenched highly Er3+-doped fiber amplifiers. Opt. Express, 28, 17124(2020).

    [21] A. Dhar, A. Pal, M. C. Paula, P. Ray, H. S. Maiti, R. Sen. The mechanism of rare earth incorporation in solution doping process. Opt. Express, 16, 12835(2008).

    [22] Y. Jiao, M. Guo, R. Wang, C. Shao, L. Hu. Influence of Al/Er ratio on the optical properties and structures of Er3+/Al3+ co-doped silica glasses. J. Appl. Phys., 129, 053104(2021).

    [23] C. Yang, X. Guan, W. Lin, Q. Zhao, G. Tang, J. Gan, Q. Qian, Z. Feng, Z. Yang, S. Xu. Efficient 1.6 µm linearly-polarized single-frequency phosphate glass fiber laser. Opt. Express, 25, 29078(2017).

    [24] K. Linganna, J.-H. In, J.-T. Ahn, Y. Choi, Y.-E. Im, D.-B. Kim, J. H. Choi. Implementation of fluorophoshate laser glass for short length active fiber at 1.5 µm. Opt. Laser Technol., 127, 106189(2020).

    [25] S. Fu, X. Zhu, J. Wang, J. Wu, M. Tong, J. Zong, M. Li, K. Wiersma, A. Chavez-Pirson, N. Peyghambarian. L-band wavelength-tunable Er3+-doped tellurite fiber lasers. J. Lightwave Technol., 38, 1435(2020).

    [26] O. N. Egorova, S. L. Semjonov, V. V. Velmiskin, Y. P. Yatsenko, S. E. Sverchkov, B. I. Galagan, B. I. Denker, E. M. Dianov. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser. Opt. Express, 22, 7632(2014).

    [27] B. I. Denker, B. I. Galagan, V. A. Kamynin, A. A. Ponosova, K. E. Riumkin, S. L. Semjonov, S. E. Sverchkov, V. B. Tsvetkov. Gain characteristics of fibers with a heavily erbium-doped phosphate-based core and silica cladding. J. Opt. Soc. Am. B, 36, 2705(2019).

    [28] A. M. Smirnov, O. V. Butov. Pump and thermal impact on heavily erbium-doped fiber laser generation. Opt. Lett., 46, 86(2020).

    [29] A. V. Kir’yanov, Y. O. Barmenkov, G. E. Sandoval-Romero, L. Escalante-Zarate. Er3+ concentration effects in commercial erbium-doped silica fibers fabricated through the MCVD and DND technologies. IEEE J. Quantum Electron., 49, 511(2013).

    [30] D. S. Fan, Y. H. Luo, B. B. Yan, A. Stancalie, D. Ighigeanu, D. Negut, D. Sporea, J. Z. Zhang, J. X. Wen, J. J. Ma, P. F. Lu, G. D. Peng. Ionizing radiation effect upon Er/Yb co-doped fibre made by in-situ nano solution doping. J. Lightwave Technol., 38, 6334(2020).

    [31] F. Wang, Z. Lin, C. Shao, Q. Zhou, L. Zhang, M. Wang, D. Chen, G. Gao, S. Wang, C. Yu, L. Hu. Centimeter-scale Yb-free heavily Er-doped silica fiber laser. Opt. Lett., 43, 2356(2018).

    [32] W. Li, Q. Zhou, L. Zhang, S. Wang, M. Wang, C. Yu, S. Feng, D. Chen, L. Hu. Watt-level Yb-doped silica glass fiber laser with a core made by sol-gel method. Chin. Opt. Lett., 11, 091601(2013).

    [33] P. Myslinski, J. Fraser, J. Chrostowski. Nanosecond kinetics of upconversion process in EDF and its effect on EDFA performance. Optical Amplifiers and Their Applications, ThE3(1995).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Qiubai Yang, Yan Jiao, Chunlei Yu, Chongyun Shao, Fengguang Lou, Shikai Wang, Lei Zhang, Qiuhong Yang, Lili Hu. Gain and laser performance of heavily Er-doped silica fiber fabricated by MCVD combined with the sol-gel method[J]. Chinese Optics Letters, 2021, 19(11): 110603

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Feb. 7, 2021

    Accepted: Apr. 27, 2021

    Published Online: Aug. 26, 2021

    The Author Email: Chunlei Yu (sdycllcy@163.com), Lili Hu (hulili@siom.ac.cn)

    DOI:10.3788/COL202119.110603

    Topics