Infrared and Laser Engineering, Volume. 50, Issue 7, 20200230(2021)

Situation and key technology of tactical laser anti-UAV

Mengzhen Zhu, Xia Chen, Xu Liu, Chaoyong Tan, and Wei Li
Author Affiliations
  • Ordnance Non-Commissioned Officer Academy, Army Engineering University, Wuhan 430075, China
  • show less
    References(55)

    [1] Cheng Yong, Guo Yanlong, Tang Huang, et al. Development trend of tactical laser weapons[J]. Laser & Optoelectronics Progress, 53, 110004(2016).

    [3] Li Yiyong, Wang Jianhua, Li Zhi. Development situation of high-energy laser weapons[J]. Journal of Ordnance Equipment Engineering, 38, 1-6(2017).

    [6] Zhang Dongyan, Zhang Jie. The latest development of laser weapon of Lockheed Martin[J]. Electro-optic Technology Application, 34, 1-5(2019).

    [7] Cao Qiusheng, Lu Jing, Liu Jianguang, et al. From SHIELD to look into the anti-missile capability and technical challenge of airborne laser weapon[J]. Journal of CAEIT, 14, 443-451(2019).

    [10] He Qiyi, Zong Siguang. Research progress and consideration of shipborne laser weapon[J]. Laser & Infrared, 47, 1455-1460(2017).

    [11] [11] Ludewigt K, Riesbeck Th, Graf A, et al. 50kW laser weapon demonstrat of Rheinmetall Wafe Munition[C]Proc of SPIE, 2013, 8898: 88980N.

    [13] [13] Rudolf Protz, Jürgen Zoz, Franz Geidek, et al. Highpower beam combininga step to a future laser weapon system[C]Proc of SPIE, 2012, 8547: 854708.

    [17] Giesen A, Hügel H, VossA, et al. Scalable concept for diode-pumped high-power solid-state lasers[J]. Applied Physics B, 58, 365-372(1994).

    [18] Kalisky Y Y, Kalisky O. The status of high-power lasers and their applications in the battlefield[J]. Optical Engineering, 49, 091003(2010).

    [19] Yi Jiayu, Ru Bo, Cao Haixia, et al. Design and experiment on high-power direct-liquid-cooled thin-disk solid-state Laser[J]. Chinese Journal of Lasers, 45, 1201004(2018).

    [20] Gan Qijun, Jiang Benxue, Zhang Pande, et al. Research progress of high average power solid-state lasers[J]. Laser & Optoelectronics Progress, 54, 010003(2017).

    [21] [21] McNaught S J, Komine H, Weiss S B, et al. 100kW coherently combined slab MOPAs[C]Conference on Lasers Electro Optics, 2009 2009 Conference on Quantum Electronics Laser Science Conference, CLEOQELS 2009, 2009: 12.

    [22] Lei Xiaoli, Sun Ling, Liu Yang, et al. Laser with 100 kW output power developed by the Textron company[J]. Laser & Infrared, 41, 948-952(2011).

    [23] Sweetman B. General atomic claims laser breakthrough[J]. Aviation Week & Space Technology, 177, 30-31(2015).

    [24] Graham Warwick. General atomics: third-gen electric laser weapon now ready[J]. Aviation Week & Space Technology, 3, 30-31(2015).

    [25] An Haixia, Deng Kun, Bi Zhiyue. Miniaturization and lightweight technology of high-power laser equipment[J]. Chinese Optics, 10, 321-330(2017).

    [26] Wang Chao, Tang Xiaojun, Xu Liujing, et al. Investigation on thermal effect of high power slab laser with 11kW[J]. Chinese Journal of Lasers, 37, 2807-2809(2010).

    [27] Ding Xiaokang, Liu Yang, Zhang Weiqiao, et al. Yb: YAG surface-doped slab laser amplifier with laser power of 10 kW[J]. Laser & Infrared, 50, 157-160(2020).

    [28] Gao Qingsong, Hu Hao, Pei Zhengping, et al. Design and experiment study of all-solid slab laser amplifier with laser power of 10 kW[J]. Chinese Journal of Lasers, 39, 0202001(2012).

    [29] Wang Juntao, Tong Lixin, Xu Liu, et al. 5kW end-pumped Nd: YAG slab lasers and beam quality improvement[J]. Chinese Journal of Lasers, 45, 0101003(2018).

    [30] Tang Xiaojun, Wang Gang, Liu Jiao, et al. Development of high brightness solid-state laser technology[J]. Strategic Study of CAE, 22, 49-55(2020).

    [31] Gao Qingsong, Zhou Tangjian, Shang Jianli, et al. High efficiency and compact Yb: YAG slab all-solid state laser at room temperature[J]. High Power Laser and Particle Beams, 32, 121009(2020).

    [32] [32] Guo Y D. Beam quality control technology f high energysolid laser system[C]Chengdu: The Fourth Symposium on the Development of Atmospheric Optics Adaptive Optics, 2019. (in Chinese)

    [33] Liu Jiao, Wang Juntao, Zhou Tangjian, et al. Analysis and developments of high-power planar waveguide lasers[J]. High Power Laser and Particle Beams, 27, 061015(2015).

    [34] Wang Juntao, Wu Zhenhai, Su Hua, et al. 1.5kW efficient CW Nd:YAG planar waveguide MOPA laser[J]. Optics Letters, 42, 3149-3152(2017).

    [36] Chen Xiaolong, He Yu, Xu Zhongwei, et al. Theoretical and experimental investigation of a 10-kW high-efficiency 1070-nm fiber amplifier[J]. Chinese Journal of Lasers, 47, 1006001(2020).

    [37] Lin H H, Tang X, Li C Y, et al. Home-made single-fiber laser system achieved 10.6 kW laser output[J]. Chinese Journal of Lasers, 45, 0315001(2018).

    [38] [38] Gong M L, Yan P, Xiao Q R. High power fiber laser technology future development[C]Weihai: Seminar on Advanced High Power High Energy Laser Technology Application, 2017. (in Chinese)

    [39] Liu Zejin, Wang Hongyan, Xu Xiaojun. High energy diode pumped gas laser[J]. Chinese Journal of Lasers, 48, 0401001(2021).

    [40] [40] Syring J. Ballistic missile defense system update[ROL]. [20160224]. https:www.csis.geventsballisticmissiledefensesystemupdate1.

    [41] [41] Ronald O R. Navy shipboard lasers f surface, air, missile defense: background issues f congress[EBOL]. (20120629)[20141011]. http:www.crs.gov.

    [42] Ren Guoguang, Yi Weiwei, Qu Changhong. High-power fiber lasers and their applications in tactical laser weapons[J]. Laser& Infrared, 45, 1145-1151(2015).

    [43] [43] Rudolf Protz, Jürgen Zoz, Franz Geidek, et al. Highpower beam combininga step to a future laser weapon system[C]HighPower Lasers 2012: Technology Systems, Proc of SPIE, 2012, 8547: 854708.

    [44] [44] Honea E, Afzal R S, SavageLeuchs M, et al. Advances in fiber laser spectral beam combining f power scaling[C]Proceedings of SPIE, 2016, 9730: 97300Y.

    [45] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6kW common aperture spectral beam combination syatem based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 43, 0901009(2016).

    [46] Zheng Ye, Zhu Zhanda, Liu Xiaoxi, et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings[J]. Appl Opt, 58, 8339-8343(2019).

    [47] Zheng Ye, Yang Yifeng, Zhao Xiang, et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 44, 0201002(2017).

    [49] Zhu Mengzhen, Wan Qiang, Liu Xu, et al. Study on coherent characteristic of solid state laser with corner cube resonator[J]. Inrared and Laser Engineering, 45, 0906008(2016).

    [50] Wang Xiaolin, Zhou Pu, Su Rongtao, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 44, 0201001(2017).

    [51] [51] Missile Defense Agency. Department of defense fiscal year(FY)2017 president’s budget submission[ZOL]. [20170224]. http:www.docin.comp1477155476.html.

    [52] [52] Fles A, Ehrenreich T, Holten R, et al. MultikW coherent combining of fiber lasers seeded with pseudo rom phase modulated light[C]SPIE, 2016, 9728: 97281Y.

    [55] Zhi Dong, Ma Yanxing, Ma Pengfei, et al. Efficient coherent beam combining of fiber laser array through km-scale turbulent atmosphere[J]. Infrared and Laser Engineering, 48, 1005007(2019).

    [56] Cheng Y, Liu X, Wan Q, et al. Mutual injection phase locking coherent combination of solid state lasers based on corner cube[J]. Optics Letters, 38, 5150-5152(2013).

    [57] Sun Bin, Zhu Mengzhen, Tan Chaoyong, et al. Latest progress of research on adjust-free solid state laser[J]. Infrared and Laser Engineering, 43, 3244-3251(2014).

    [58] [58] Cheng Yong, Zhu Mengzhen, Tang Huang, et al. High power solid state laser with cner cube retroreflects of mutualinjection confinement[C]LIDAR Imaging Detection Target Recognition, Proc of SPIE, 2017, 10605: 106052G.

    [59] Rémi Soulard, Mark N Quinn, Toshiki Tajima, et al. ICAN: A novel laser architecture for space debris removal[J]. Acta Astronautica, 105, 192-200(2014).

    [60] Toshikazu Ebisuzaki, Mark N Quinn, Satoshi Wada, et al. Demonstration desighs for the remediation of space debris from the international Space Station[J]. Acta Astronautica, 112, 102-113(2015).

    [61] [61] Optics g. DARPA extends laser weapon range[EBOL]. http:optics.gnews5313.

    [62] Wang Huihua, Lin Longxin, Ye Xin. Progress an Tendency of high power slab lasers[J]. Infrared and Laser Engineering, 49, 20190456(2020).

    [63] Ren Guoguang, Yi Weiwei, Qi Yu, et al. U. S. theater and strategic UVA-Borne laser weapon[J]. Laser & Optoelectronics Progress, 54, 100002(2017).

    [64] Yi Quan, Sun Xianzhi, Yang Jianchang, et al. Analysis on the accuracy of tactical laser weapon[J]. Fire Control& Command Control, 43, 98-102(2018).

    [65] Zhao Lei, Ji Ming, Zhao Zhenhai, et al. Primary-precise compounded control for stabilized platform in shipborne laser weapon[J]. Laser & Infrared, 49, 86-92(2019).

    [66] Xu Guoliang, Zhao Shubin, Wang Yong. Technology analysis of shipborne high-energy laser weapon systems intercepting UAVs[J]. Modern Defence Technology, 43, 12-17(2015).

    [67] [67] David H Titterton. Military Laser Technology Systems[M]. Cheng Yong translated. Beijing: National Defense Press, 2018. (in Chinese)

    [68] Cheng Yong, Zhu Mengzhen, Ma Yunfeng, et al. Mechanism and effects of complex laser ablation[J]. Infrared and Laser Engineering, 45, 1105005(2016).

    CLP Journals

    [1] Jin Peng, Hongqiao Xu, Yongbiao Wang, Xingxing Wang, Yongzhen Zhang, Weimin Long, Dingyu Zhang. Effect of laser spot size on the behavior of molten pool and keyhole in laser welding[J]. Infrared and Laser Engineering, 2023, 52(7): 20220130

    [2] Zhen Yang, Qianqian Guo, Manguo Liu, Dan Jiao, Haohui Chen, Yong Zhang, Jianlong Zhang. Experimental research on laser detection and tracking of unmanned aerial vehicles under flame and smoke[J]. Infrared and Laser Engineering, 2024, 53(4): 20230700

    [3] Shan Xue, Yuchao Chen, Qiongying Lv, Guohua Cao. Image recognition method of anti drone system based on coordinate attention mechanism[J]. Infrared and Laser Engineering, 2022, 51(9): 20211101

    [4] Liya Li, Song He, Zhu Zhao, Ya Song, Rong Cai, Changmeng Zhang, Ruifeng Fan, Dongyi Yu. Construction and development of LSS target prevention and control system[J]. Infrared and Laser Engineering, 2023, 52(12): 20230034

    [5] Kuangang Fan, Shuang Lei, Tong Bie. Design and implementation of intelligent UAV intrusion detection, tracking and interception system[J]. Infrared and Laser Engineering, 2022, 51(8): 20210750

    [6] Xiang Li, Chen Zhou, Yongqi Zhu, Keyan Dong, Liang Gao, Yan An, Wenqiang Xi, Yuhai Liu. Temperature adaptability of optical middle cabin of airborne high-energy laser system based on cage-type structure[J]. Infrared and Laser Engineering, 2024, 53(4): 20230663

    [7] Yueting Zhang, Yi Tan, Jihong Wang, Qi Peng, Zhikun Yang. Influence of solid-gas coupling thermal effect caused by stray light from laser window on beam quality[J]. Infrared and Laser Engineering, 2022, 51(9): 20210966

    [8] Mengzhen Zhu, Yun Liu, Chaowei Mi, Jingsong Wei, Xia Chen, Fangtao Tian, Sumao Feng, Sai Wang. Experimental study on a CMOS image sensor damaged by a composite laser[J]. Infrared and Laser Engineering, 2022, 51(7): 20210537

    Tools

    Get Citation

    Copy Citation Text

    Mengzhen Zhu, Xia Chen, Xu Liu, Chaoyong Tan, Wei Li. Situation and key technology of tactical laser anti-UAV[J]. Infrared and Laser Engineering, 2021, 50(7): 20200230

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers & Laser optics

    Received: Oct. 14, 2020

    Accepted: --

    Published Online: Aug. 23, 2021

    The Author Email:

    DOI:10.3788/IRLA20200230

    Topics