Infrared and Laser Engineering, Volume. 50, Issue 7, 20200230(2021)
Situation and key technology of tactical laser anti-UAV
[1] Cheng Yong, Guo Yanlong, Tang Huang, et al. Development trend of tactical laser weapons[J]. Laser & Optoelectronics Progress, 53, 110004(2016).
[3] Li Yiyong, Wang Jianhua, Li Zhi. Development situation of high-energy laser weapons[J]. Journal of Ordnance Equipment Engineering, 38, 1-6(2017).
[6] Zhang Dongyan, Zhang Jie. The latest development of laser weapon of Lockheed Martin[J]. Electro-optic Technology Application, 34, 1-5(2019).
[7] Cao Qiusheng, Lu Jing, Liu Jianguang, et al. From SHIELD to look into the anti-missile capability and technical challenge of airborne laser weapon[J]. Journal of CAEIT, 14, 443-451(2019).
[10] He Qiyi, Zong Siguang. Research progress and consideration of shipborne laser weapon[J]. Laser & Infrared, 47, 1455-1460(2017).
[11] [11] Ludewigt K, Riesbeck Th, Graf A, et al. 50kW laser weapon demonstrat of Rheinmetall Wafe Munition[C]Proc of SPIE, 2013, 8898: 88980N.
[13] [13] Rudolf Protz, Jürgen Zoz, Franz Geidek, et al. Highpower beam combininga step to a future laser weapon system[C]Proc of SPIE, 2012, 8547: 854708.
[17] Giesen A, Hügel H, VossA, et al. Scalable concept for diode-pumped high-power solid-state lasers[J]. Applied Physics B, 58, 365-372(1994).
[18] Kalisky Y Y, Kalisky O. The status of high-power lasers and their applications in the battlefield[J]. Optical Engineering, 49, 091003(2010).
[19] Yi Jiayu, Ru Bo, Cao Haixia, et al. Design and experiment on high-power direct-liquid-cooled thin-disk solid-state Laser[J]. Chinese Journal of Lasers, 45, 1201004(2018).
[20] Gan Qijun, Jiang Benxue, Zhang Pande, et al. Research progress of high average power solid-state lasers[J]. Laser & Optoelectronics Progress, 54, 010003(2017).
[21] [21] McNaught S J, Komine H, Weiss S B, et al. 100kW coherently combined slab MOPAs[C]Conference on Lasers Electro Optics, 2009 2009 Conference on Quantum Electronics Laser Science Conference, CLEOQELS 2009, 2009: 12.
[22] Lei Xiaoli, Sun Ling, Liu Yang, et al. Laser with 100 kW output power developed by the Textron company[J]. Laser & Infrared, 41, 948-952(2011).
[23] Sweetman B. General atomic claims laser breakthrough[J]. Aviation Week & Space Technology, 177, 30-31(2015).
[24] Graham Warwick. General atomics: third-gen electric laser weapon now ready[J]. Aviation Week & Space Technology, 3, 30-31(2015).
[25] An Haixia, Deng Kun, Bi Zhiyue. Miniaturization and lightweight technology of high-power laser equipment[J]. Chinese Optics, 10, 321-330(2017).
[26] Wang Chao, Tang Xiaojun, Xu Liujing, et al. Investigation on thermal effect of high power slab laser with 11kW[J]. Chinese Journal of Lasers, 37, 2807-2809(2010).
[27] Ding Xiaokang, Liu Yang, Zhang Weiqiao, et al. Yb: YAG surface-doped slab laser amplifier with laser power of 10 kW[J]. Laser & Infrared, 50, 157-160(2020).
[28] Gao Qingsong, Hu Hao, Pei Zhengping, et al. Design and experiment study of all-solid slab laser amplifier with laser power of 10 kW[J]. Chinese Journal of Lasers, 39, 0202001(2012).
[29] Wang Juntao, Tong Lixin, Xu Liu, et al. 5kW end-pumped Nd: YAG slab lasers and beam quality improvement[J]. Chinese Journal of Lasers, 45, 0101003(2018).
[30] Tang Xiaojun, Wang Gang, Liu Jiao, et al. Development of high brightness solid-state laser technology[J]. Strategic Study of CAE, 22, 49-55(2020).
[31] Gao Qingsong, Zhou Tangjian, Shang Jianli, et al. High efficiency and compact Yb: YAG slab all-solid state laser at room temperature[J]. High Power Laser and Particle Beams, 32, 121009(2020).
[32] [32] Guo Y D. Beam quality control technology f high energysolid laser system[C]Chengdu: The Fourth Symposium on the Development of Atmospheric Optics Adaptive Optics, 2019. (in Chinese)
[33] Liu Jiao, Wang Juntao, Zhou Tangjian, et al. Analysis and developments of high-power planar waveguide lasers[J]. High Power Laser and Particle Beams, 27, 061015(2015).
[34] Wang Juntao, Wu Zhenhai, Su Hua, et al. 1.5kW efficient CW Nd:YAG planar waveguide MOPA laser[J]. Optics Letters, 42, 3149-3152(2017).
[36] Chen Xiaolong, He Yu, Xu Zhongwei, et al. Theoretical and experimental investigation of a 10-kW high-efficiency 1070-nm fiber amplifier[J]. Chinese Journal of Lasers, 47, 1006001(2020).
[37] Lin H H, Tang X, Li C Y, et al. Home-made single-fiber laser system achieved 10.6 kW laser output[J]. Chinese Journal of Lasers, 45, 0315001(2018).
[38] [38] Gong M L, Yan P, Xiao Q R. High power fiber laser technology future development[C]Weihai: Seminar on Advanced High Power High Energy Laser Technology Application, 2017. (in Chinese)
[39] Liu Zejin, Wang Hongyan, Xu Xiaojun. High energy diode pumped gas laser[J]. Chinese Journal of Lasers, 48, 0401001(2021).
[40] [40] Syring J. Ballistic missile defense system update[ROL]. [20160224]. https:www.csis.geventsballisticmissiledefensesystemupdate1.
[41] [41] Ronald O R. Navy shipboard lasers f surface, air, missile defense: background issues f congress[EBOL]. (20120629)[20141011]. http:www.crs.gov.
[42] Ren Guoguang, Yi Weiwei, Qu Changhong. High-power fiber lasers and their applications in tactical laser weapons[J]. Laser& Infrared, 45, 1145-1151(2015).
[43] [43] Rudolf Protz, Jürgen Zoz, Franz Geidek, et al. Highpower beam combininga step to a future laser weapon system[C]HighPower Lasers 2012: Technology Systems, Proc of SPIE, 2012, 8547: 854708.
[44] [44] Honea E, Afzal R S, SavageLeuchs M, et al. Advances in fiber laser spectral beam combining f power scaling[C]Proceedings of SPIE, 2016, 9730: 97300Y.
[45] Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6kW common aperture spectral beam combination syatem based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 43, 0901009(2016).
[46] Zheng Ye, Zhu Zhanda, Liu Xiaoxi, et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings[J]. Appl Opt, 58, 8339-8343(2019).
[47] Zheng Ye, Yang Yifeng, Zhao Xiang, et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 44, 0201002(2017).
[49] Zhu Mengzhen, Wan Qiang, Liu Xu, et al. Study on coherent characteristic of solid state laser with corner cube resonator[J]. Inrared and Laser Engineering, 45, 0906008(2016).
[50] Wang Xiaolin, Zhou Pu, Su Rongtao, et al. Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 44, 0201001(2017).
[51] [51] Missile Defense Agency. Department of defense fiscal year(FY)2017 president’s budget submission[ZOL]. [20170224]. http:www.docin.comp1477155476.html.
[52] [52] Fles A, Ehrenreich T, Holten R, et al. MultikW coherent combining of fiber lasers seeded with pseudo rom phase modulated light[C]SPIE, 2016, 9728: 97281Y.
[55] Zhi Dong, Ma Yanxing, Ma Pengfei, et al. Efficient coherent beam combining of fiber laser array through km-scale turbulent atmosphere[J]. Infrared and Laser Engineering, 48, 1005007(2019).
[56] Cheng Y, Liu X, Wan Q, et al. Mutual injection phase locking coherent combination of solid state lasers based on corner cube[J]. Optics Letters, 38, 5150-5152(2013).
[57] Sun Bin, Zhu Mengzhen, Tan Chaoyong, et al. Latest progress of research on adjust-free solid state laser[J]. Infrared and Laser Engineering, 43, 3244-3251(2014).
[58] [58] Cheng Yong, Zhu Mengzhen, Tang Huang, et al. High power solid state laser with cner cube retroreflects of mutualinjection confinement[C]LIDAR Imaging Detection Target Recognition, Proc of SPIE, 2017, 10605: 106052G.
[59] Rémi Soulard, Mark N Quinn, Toshiki Tajima, et al. ICAN: A novel laser architecture for space debris removal[J]. Acta Astronautica, 105, 192-200(2014).
[60] Toshikazu Ebisuzaki, Mark N Quinn, Satoshi Wada, et al. Demonstration desighs for the remediation of space debris from the international Space Station[J]. Acta Astronautica, 112, 102-113(2015).
[61] [61] Optics g. DARPA extends laser weapon range[EBOL]. http:optics.gnews5313.
[62] Wang Huihua, Lin Longxin, Ye Xin. Progress an Tendency of high power slab lasers[J]. Infrared and Laser Engineering, 49, 20190456(2020).
[63] Ren Guoguang, Yi Weiwei, Qi Yu, et al. U. S. theater and strategic UVA-Borne laser weapon[J]. Laser & Optoelectronics Progress, 54, 100002(2017).
[64] Yi Quan, Sun Xianzhi, Yang Jianchang, et al. Analysis on the accuracy of tactical laser weapon[J]. Fire Control& Command Control, 43, 98-102(2018).
[65] Zhao Lei, Ji Ming, Zhao Zhenhai, et al. Primary-precise compounded control for stabilized platform in shipborne laser weapon[J]. Laser & Infrared, 49, 86-92(2019).
[66] Xu Guoliang, Zhao Shubin, Wang Yong. Technology analysis of shipborne high-energy laser weapon systems intercepting UAVs[J]. Modern Defence Technology, 43, 12-17(2015).
[67] [67] David H Titterton. Military Laser Technology Systems[M]. Cheng Yong translated. Beijing: National Defense Press, 2018. (in Chinese)
[68] Cheng Yong, Zhu Mengzhen, Ma Yunfeng, et al. Mechanism and effects of complex laser ablation[J]. Infrared and Laser Engineering, 45, 1105005(2016).
Get Citation
Copy Citation Text
Mengzhen Zhu, Xia Chen, Xu Liu, Chaoyong Tan, Wei Li. Situation and key technology of tactical laser anti-UAV[J]. Infrared and Laser Engineering, 2021, 50(7): 20200230
Category: Lasers & Laser optics
Received: Oct. 14, 2020
Accepted: --
Published Online: Aug. 23, 2021
The Author Email: