Optics and Precision Engineering, Volume. 28, Issue 7, 1480(2020)
Prediction of momentum distribution of supercooled atoms in optical lattice using convolutional-recurrent network
[1] [1] ZHOU X J, JIN SH J, SCHMIEDMAY J. Shortcut loading a Bose-Einstein condensate into an optical lattice [J]. New Journal of Physics, 2018, 20(5): 055005-055028.
[2] [2] POLI N, WANG F Y, TARALLO M G, et al.. Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter [J]. Physical Review Letters, 2011, 106(3): 038501-038505.
[3] [3] CAMPBELL S L, HUTSON R B, MARTI G E, et al.. A Fermi-degenerate three-dimensional optical lattice clock [J]. Science, 2017, 358(6359): 90-94.
[4] [4] JIN SH J, GUO X X, PENG P, et al.. Finite temperature phase transition in a cross-dimensional triangular lattice [J]. New Journal Physics, 2019, 21(7): 073015-073022.
[5] [5] ASTERIA L, TRAN D T, OZAWA T, et al.. Measuring quantized circular dichroism in ultracold topological matter [J]. Nature Physics, 2019, 15: 449-454.
[6] [6] BLOCH I, DALIBARD J, ZWERGER W. Many-body physics with ultracold gases [J].Reviews of Modern Physics, 2008, 80(3): 885-964.
[7] [7] HU D, NIU L X, JIN SH J, et al.. Ramsey interferometry with trapped motional quantum states [J]. Comm. Phys. 2018, 12(1): 29-38.
[8] [8] GROSS E P. Hydrodynamics of a superfluid Condensate [J].Journal of Mathematical Physics, 1963, 4(2): 195-207.
[9] [9] JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects [J].Science, 2015, 349(6245): 255-260.
[10] [10] HU Y, LUO D Y, HUA K, et al.. Review and discussion on deep learning [J].Journal of intelligent systems, 2019, 14(1): 1-19. (in Chinese)
[11] [11] ABBOTT B P. Observation of gravitational waves from a binary black hole merger [J]. Physical Review Letters, 2016, 116(6): 061102-061118.
[12] [12] PASQUATO M. Detecting intermediate mass black holes in globular clusters with machine learning [J]. Memorie della Societa Astronomica Italiana, 2016, 87: 571-574.
[13] [13] BROECKER P, CARRASQUILLA J, MELKO R G, et al.. Machine learning quantum phases of matter beyond the fermion sign problem [J]. Scientific Reports, 2017, 7(1): 8823-8831.
[14] [14] CHNG K, CARRASQUILLA J, MELKO R G, et al.. Machine Learning Phases of Strongly Correlated Fermions [J]. Physical Review X, 2017, 7(3): 031038-031047.
[15] [15] PAN X ZH, ZHANG SH Q, GUO W P. Application of multi-mode deep convolution neural network to video expression recognition [J].Opt. Precision Eng., 2019, 27(4): 963-970. (in Chinese)
[16] [16] LI Y, LIU X Y, ZHANG H Q, et al.. Optical remote sensing image retrieval based on convolutional neural network [J]. Opt. Precision Eng., 2018, 26(1): 200-207. (in Chinese)
[17] [17] FANG M, SUN T T, SHAO ZH. Fast helmet wearing detection based on improved yolov2 [J].Opt. Precision Eng., 2019, 27(5): 1196-1205. (in Chinese)
[18] [18] LI Y H, LIANG S CH, REN J, et al.. Text classification method based on cyclic neural network variants and convolutional neural network [J]. Journal of Northwestern University: Natural Science Edition, 2019, 49(4): 573-579. (in Chinese)
[19] [19] SHAN C H, GUO X R, OU J. Deep leaky single-peaked triangle neural networks [J]. International Journal of Control Automation and Systems, 2019, 17(8): 2693-2701.
Get Citation
Copy Citation Text
LI Yun-hong, LI Hong-hao, WEN Da, WEI Fan-su, GUO Xin-xin, ZHOU Xiao-ji. Prediction of momentum distribution of supercooled atoms in optical lattice using convolutional-recurrent network[J]. Optics and Precision Engineering, 2020, 28(7): 1480
Category:
Received: Dec. 10, 2019
Accepted: --
Published Online: Nov. 2, 2020
The Author Email: Yun-hong LI (hitliyunhong@163.com)