Journal of Innovative Optical Health Sciences, Volume. 16, Issue 5, 2241002(2023)
Identification of serous ovarian tumors based on polarization imaging and correlation analysis with clinicopathological features
[1] et alInvestigation on factors associated with ovarian cancer: an umbrella review of systematic review and meta-analyses. J. Ovarian Res., 14, 153(2021).
[2] et alFuture screening prospects for ovarian cancer. Cancers, 13, 3840(2021).
[3] et alThe gold standard paradox in digital image analysis: manual versus automated scoring as ground truth. Arch. Pathol. Lab. Med., 141, 1267-1275(2017).
[4] et alArtificial intelligence, machine learning, computer-aided diagnosis, and radiomics: advances in imaging towards to precision medicine. Radiol. Bras., 52, 387-396(2019).
[5] Pathogenesis and heterogeneity of ovarian cancer. Curr. Opin. Obstet. Gynecol., 29, 26-34(2017).
[6] et alSelection of representative histologic slides in interobserver reproducibility studies: insights from expert review for ovarian carcinoma subtype classification. J. Pathol. Inform., 12, 15(2021).
[7] et alAn improved calibration technique for polarization images. IEEE Access, 7, 28651-28662(2019).
[8] et alMueller matrix polarimetry — an emerging new tool for characterizing the microstructural feature of complex biological specimen. J. Lightw. Technol., 37, 2534-2548(2019).
[9] et alQuantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed. Opt. Express, 8, 3643-3655(2017).
[10] et alQuantitatively characterizing microstructural variations of skin tissues during ultraviolet radiation damaging process based on Mueller matrix polarimetry. Proc. SPIE, 10467, 104670Y(2018).
[11] et alPolarimetry feature parameter deriving from Mueller matrix imaging and auto-diagnostic significance to distinguish HSIL and CSCC. J. Innov. Opt. Health Sci., 15, 2142008(2022).
[12] et alA polarization-imaging-based machine learning framework for quantitative pathological diagnosis of cervical precancerous lesions. IEEE Trans. Med. Imaging, 40, 3728-3738(2021).
[13] Diversity in machine learning. IEEE Access, 7, 64323-64350(2019).
[14] et alFast Mueller matrix microscope based on dual DoFP polarimeters. Opt. Lett., 46, 1676-1679(2021).
[15] et alDivision of focal plane polarimeter-based 3l DoFP polarimeterstitative pathological diagnosis of cervical precancerous lesionsCCMueller. J. Biomed. Opt., 21, 056002(2016).
[16] Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A, 13, 1106-1113(1996).
[17] et alA possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien. Photonics Lasers Med., 2, 129-137(2013).
[18] . Optical Polarization in Biomedical Applications(2006).
[19] et alPolaromics: deriving polarization parameters from a Mueller matrix for quantitative characterization of biomedical specimen. J. Phys. D, Appl. Phys., 55, 034002(2021).
[20] et alSeparating azimuthal orientation dependence in polarization measurements of anisotropic media. Opt. Express, 26, 3791-3800(2018).
[21] Relationships between elements of the Stokes matrix. Appl. Opt., 20, 2811-2814(1981).
[22] A retrospective study of the epidemiology and histological subtypes of ovarian epithelial neoplasms at Charlotte Maxeke Johannesburg Academic Hospital. South. Afr. J. Gynaecol. Oncol., 13, 26-35(2021).
[23] et alEx vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry. J. Biomed. Opt., 20, 056012(2015).
[24] et alMueller matrix polarimetry for differentiating characteristic features of cancerous tissues. J. Biomed. Opt., 19, 076013(2014).
[25] et alManagement of borderline ovarian tumors: Series of case report and review of the literature. Indian J. Surg., 83, 617-624(2021).
[26] The pathology of and controversial aspects of ovarian borderline tumours. Curr. Opin. Oncol., 22, 462-472(2010).
[27] Artificial intelligence as the next step towards precision pathology. J. Intern. Med., 288, 62-81(2020).
[28] . Hysterectomy, I. Alkatout, L.Mettler, 155-159(2018).
Get Citation
Copy Citation Text
Yulu Huang, Anli Hou, Jing Wang, Yue Yao, Wenbin Miao, Xuewu Tian, Jiawen Yu, Cheng Li, Hui Ma, Yujuan Fan. Identification of serous ovarian tumors based on polarization imaging and correlation analysis with clinicopathological features[J]. Journal of Innovative Optical Health Sciences, 2023, 16(5): 2241002
Category: Research Articles
Received: Apr. 7, 2022
Accepted: Aug. 10, 2022
Published Online: Sep. 26, 2023
The Author Email: Fan Yujuan (yjfan530@163.com)