Infrared and Laser Engineering, Volume. 48, Issue 12, 1203004(2019)

Research progress and related problems on the acquisition method of total atmospheric transmittance

Cao Zhensong*... Huang Yinbo, Wei Heli, Zhu Wenyue, Rao Ruizhong and Wang Yingjian |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(66)

    [4] [4] Goody R M, Yung Y L. Atmospheric Radiation: Theoretical Basis[M]. Oxford: Oxford University Press, 1989: 125-181.

    [5] [5] Clough S A, Iacono M J. Line-by-line calculations of atmospheric fluxes and cooling rates: Part II: Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons [J]. Journal of Geophysics Research, 1995, 100(8): 16519-16535.

    [6] [6] Witschas B. Light Scattering on Molecules in the Atmosphere[M]//Schumann U. Atmospheric Physics. Research Topics in Aerospace, Berlin: Springer, 2012.

    [7] [7] Kokhanovsky A. Aerosol Optics: Light Absorption and Scattering by Particles in the Atmosphere [M]. Berlin: Springer, 2008.

    [9] [9] Adler-Golden S M, Slusser J R. Comparison of plotting methods for solar radiometer calibration[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(5): 935-938.

    [10] [10] Selby J E A, McClatchey R A. Atmospheric transmittance from 0.25 to 28.5 μm: Computer Code LOWTRAN 3 [S]. 1975.

    [11] [11] Haught K M, Cordray D M. Long-path high-resolution atmospheric transmission measurements: comparison with LOWTRAN 3B predictions [J]. Applied Optics, 1978, 17(17): 2668-2670.

    [12] [12] Kneizys, F X, Shettle E, Abreu L W, et al. User guide to LOWTRAN 7 [Z]. 1988.

    [14] [14] Berk A, Conforti P, Kennett R. MODTRAN6: a major upgrade of the MODTRAN radiative transfer code [C]//SPIE, 2014, 9088: 10.1117/12.2050433.

    [15] [15] Berk A, Conforti P, Hawes F. An accelerated line-by-line option for MODTRAN combining on-the-fly generation of line center absorption with 0.1 cm-1 bins and pre-computed line tails[C]//SPIE, 2015, 9471: 10.1117/12.2177444.

    [16] [16] Clough S A, Kneizys F X, Shettle E P, et al. Atmospheric radiance and transmittance: FASCOD2[C]//Proceedings of the Sixth Conference on Atmospheric Radiation, American Meteorological Society, 1986: 141-144.

    [17] [17] Zhou Fengxian, Wang Luyi. Fast and accurate software for atmospheric tranmittance calculation-FASCODE [J]. Journal of Infrared Millimeter Waves, 1991, 10(5): 398-400. (in Chinese)

    [18] [18] Isaacs R G, Wang W C, Worsham R D, et al. Multiple scattering LOWTRAN and FASCODE models [J]. Applied Optics, 1987, 26 (7): 1272-1281.

    [19] [19] Clough S A, Shephard M W, Mlawer E J, et al. Atmospheric radiative transfer modeling: a summary of the AER codes [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 91(2): 233-244.

    [20] [20] Alvarado M J, Payne V, Mlawer E J, et al. Performance of the line-by-line radiative transfer model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies [J]. Atmospheric Chemistry and Physics, 2013, 13(14): 6687-6711.

    [22] [22] Chen Xiuhong, Wei Heli, Xu Qingshan. Infrared atmospheric transmittance calculation model [J]. Infrared and Laser Engineering, 2011, 40(5): 811-816. (in Chinese)

    [23] [23] Lamouroux J, Gamache R R, Laraia A L, et al. Semiclassical calculations of half-widths and line shifts for transitions in the 30012←00001 and 30013←00001 bands of CO2. III: Self collisions [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113(12): 1536-1546.

    [24] [24] Wei H, Chen X, Rao R, et al. A Moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation [J]. Optics Express, 2007, 15(13): 8360-8370.

    [25] [25] Chen X H, Wei H L, Wei Y L, et al. Comparison of infrared atmospheric transmittance calculated by CART software with measured values[J]. Laser & Infrared, 2009, 39(4): 403-406.

    [26] [26] Wei Heli, Chen Xiuhong, Dai Congming. Combined atmospheric radiative transfer (CART) model and its applications [J]. Infrared and Laser Engineering, 2012, 41(12): 3360-3366. (in Chinese)

    [27] [27] Dai Congming, Wei Heli, Chen Xiuhong. Validation of the precision of atmospheric molecular absorption and thermal radiance calculated by combined atmospheric radiative transfer(CART) code [J]. Infrared and Laser Engineering, 2013, 42(6): 1575-1581. (in Chinese)

    [28] [28] Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: The software package OPAC[J]. Bulletin of the American Meteorological Society, 1998, 79(5): 831-844.

    [29] [29] Kotchenova S Y, Vermote E F. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II: homogeneous lambertian and anisotropic surfaces [J]. Applied Optics, 2007, 46(20):4455-4464.

    [30] [30] Iacono M J, Delamere J S, Mlawer E J, et al. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models [J]. Journal of Geophysical Research, 2008, 113, D13103: 10.1029/2008JD009944.

    [31] [31] Emde C, Buras-Schnell R, Kylling A, et al. The libradtran software package for radiative transfer calculations (version 2.0.1) [J]. Geoscientific Model Development, 2016, 9(5): 1647-1672.

    [33] [33] Volz F E. Photometer mit Selen-photoelement zur spektralen Messung de Sonnenstrahlung und zer Bestimmung der Wallenlangenabhangigkeit der Dunsttrubun [J]. Arch Meteor Geophys Bioklim, 1959, B10: 100-131.

    [34] [34] Mao Jietai, Li Jianguo. Visibility and telephotometer [J]. Scientia Atmospherica Sinica, 1984, 8(2): 170-177. (in Chinese)

    [37] [37] Huang Sheng, Jing Xu, Tan Fengfu, et al. Measurement and calibration methods for total atmospheric continuous transmittance [J]. Chinese Journal of Lasers, 2017, 44(7): 0710001. (in Chinese)

    [39] [39] Wang Hao, He Feng, Jing Xu, et al. Study on measurement of total atmospheric transmittance in daytime and night observation stars [J]. Infrared and Laser Engineering, 2019, 48(3): 0311001. (in Chinese)

    [40] [40] Roney P L, Reid F, Theriault J M. Transmission window near 2 400 cm-1: An experimental and modeling study [J]. Applied Optics, 1991, 30(15): 1995-2004.

    [42] [42] Paine S, Blundell R, Cosmo Papa D, et al. A Fourier transform spectrometer for measurement of atmospheric transmission at submillimeter wavelengths [J]. Publications of the Astronomical Society of the Pacific, 2000, 112: 108-118.

    [43] [43] Weidmann D, Reburn W J, Smith K M. Retrieval of atmospheric ozone profiles from an infrared quantum cascade laser heterodyne radiometer: results and analysis [J]. Applied Optics, 2007, 46(29): 7162-7171.

    [44] [44] Wilson E L, McLinden M L, Miller J H, et al. Miniaturized laser heterodyne radiometer for measurements of CO2 in the atmospheric column [J]. Applied Physics B, 2014, 114(3): 385-393.

    [45] [45] Peyton B, DiNardo A, Cohen S, et al. An infrared heterodyne radiometer for high-resolution measurements of solar radiation and atmospheric transmission [J], IEEE Journal of Quantum Electronics, 1975, 11: 569-574.

    [50] [50] Gordon I E, Rothman L S, Hill C, et al. The HITRAN2016 molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3-69.

    [51] [51] Liu Dandan, Huang Yinbo, Dai Congming, et al. Effect of changes of HITRAN database on transmittance calculation in mid-infrared region along vertical uplink [J]. Infrared and Laser Engineering, 2013, 42(7): 1776-1782. (in Chinese)

    [53] [53] Liu G L, Wang J, Tan Y, et al. Line positions and N2-induced line parameters of the 00°3-00°0 band of 14N216O by comb-assisted cavity ring-down spectroscopy [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 229: 17-22.

    [54] [54] Ma H, Liu Q, Cao Z, et al. Temperature dependences for N2-and air-broadened Lorentz half-width coefficients of methane transitions around 3.38 μm [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 171: 50-56.

    [55] [55] Richard C, Gordon I E, Rothman L S, et al. New section of the HITRAN database: Collision-induced absorption (CIA) [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113: 1276-1285.

    [56] [56] Liu Kai, Wei Lixin, Chen Zhikun, et al. Radiosonde observations at the southwest continent and analysis of atmospheric vertical structure characteristics if the Antarctic [J]. Chinese Journal of Polar Research, 2019, 31(1): 13-24. (in Chinese)

    [57] [57] Wang Yuxun, Wang Rui, Yan Wei, et al. Data simulation and parameter inversion based on microwave hyperspectral technology [J]. Journal of Microwaves, 2019, 35(2): 75-80. (in Chinese)

    [58] [58] Tao Zongming, Shi Qibing, Xie Chenbo, et al. Precise detection of near ground aerosol extinction coefficient profile based on CCD and backscattering lidar [J]. Infrared and Laser Engineering, 2019, 48(S1): S106007. (in Chinese)

    [59] [59] Ma Xiaomin, Tao Zongming, Zhang Lulu, et al. Ground layer aerosol detection technology during daytime based on side-scattering lidar [J]. Acta Optica Sinica, 2018, 38(4): 0401005. (in Chinese)

    [61] [61] Huang Sheng. The design and related data analysis of solar spectral radiometer from visible to near infrared bands [D]. Changsha: University of Science and Technology of China, 2018. (in Chinese)

    [62] [62] Shaw G E. Error analysis of multi-wavelength sun photometry [J]. Pure and Applied Geophysics, 1976, 114(1): 1-14.

    [63] [63] Yang Zhifeng, Zhang Xiaoye, Che Huizheng, et al. An introductory study on the calibration of CE318 sunphotometer [J]. Journal of applied Meteorological Science, 2008, 19(3): 297-306. (in Chinese)

    [64] [64] Zhang Junhua, Wang Meihua, Mao Jietai. Error analysis and correction for multi-wavelength Sun-photometer aerosol remote sensing [J]. Chinese Journal of Atmospheric Sciences, 2000, 24(6): 855-859. (in Chinese)

    [65] [65] Bruce C K, Zheng Q, Alexander F H G. Direct solar spectral irradiance and transmittance measurements from 350 to 2 500 nm [J]. Applied Optics, 2001, 40(21): 3483-3494.

    [66] [66] Qie L L, Dai C M, Xu Q S, et al. Calibration of near-infrared absorption band for a sun-photometer [J]. Journal of Remote Sensing, 2012, 16(5): 928-938.

    Tools

    Get Citation

    Copy Citation Text

    Cao Zhensong, Huang Yinbo, Wei Heli, Zhu Wenyue, Rao Ruizhong, Wang Yingjian. Research progress and related problems on the acquisition method of total atmospheric transmittance[J]. Infrared and Laser Engineering, 2019, 48(12): 1203004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Oct. 5, 2019

    Accepted: Nov. 1, 2019

    Published Online: Feb. 11, 2020

    The Author Email: Zhensong Cao (zscao@aiofm.ac.cn)

    DOI:10.3788/irla201948.1203004

    Topics