Acta Optica Sinica, Volume. 41, Issue 1, 0123003(2021)

High-Efficiency Manipulations on Electromagnetic Waves with Metasurfaces

Shulin Sun1, Qiong He2, Jiaming Hao3, Shiyi Xiao4, and Lei Zhou2、*
Author Affiliations
  • 1Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
  • 2Physics Department, Fudan University, Shanghai 200433, China
  • 3Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 4Department of Communication & Information Engineering, Shanghai University, Shanghai 200444, China;
  • show less
    References(58)

    [5] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966-3969(2000).

    [6] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 312, 1780-1782(2006).

    [7] Schurig D, Mock J J, Justice B J et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 314, 977-980(2006).

    [12] Sievenpiper D, Zhang L J. Broas R F J, et al. High-impedance electromagnetic surfaces with a forbidden frequency band[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2059-2074(1999).

    [16] Hao J M, Ren Q J, An Z H et al. Optical metamaterial for polarization control[J]. Physical Review A, 80, 023807(2009).

    [17] Pors A, Nielsen M G, Bozhevolnyi S I. Broadband plasmonic half-wave plates in reflection[J]. Optics Letters, 38, 513-515(2013).

    [19] Sun W J, He Q, Hao J M et al. A transparent metamaterial to manipulate electromagnetic wave polarizations[J]. Optics Letters, 36, 927-929(2011).

    [21] Martín-Moreno L. García-Vidal F J, Lezec H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Physical Review Letters, 86, 1114-1117(2001).

    [22] Ni X, Emani N K, Kildishev A V et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 335, 427(2012).

    [24] Huang L L, Chen X Z, Bai B F et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2, e70(2013).

    [26] Sun W J, He Q, Sun S L et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations[J]. Light: Science & Applications, 5, e16003(2016).

    [27] Li X, Xiao S Y, Cai B G et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry[J]. Optics Letters, 37, 4940-4942(2012).

    [28] Chen X Z, Huang L L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1198(2012).

    [31] Khorasaninejad M, Shi Z, Zhu A Y et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 17, 1819-1824(2017).

    [33] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [35] Luo W J, Xiao S Y, He Q et al. Photonic spin Hall effect with nearly 100% efficiency[J]. Advanced Optical Materials, 3, 1102-1108(2015).

    [36] Luo W J, Sun S L, Xu H X et al. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency[J]. Physical Review Applied, 7, 044033(2017).

    [37] Luo X G, Pu M B, Li X et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light, Science & Applications, 6, e16276(2017).

    [38] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 4, 2807(2013).

    [41] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [42] Li L, Cui T J, Ji W et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 8, 197(2017).

    [43] Genevet P, Yu N F, Aieta F et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Letters, 100, 013101(2012).

    [48] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [50] Ni X J, Ishii S, Kildishev A V et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2, e72(2013).

    [52] Ding X M, Monticone F, Zhang K et al. Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency[J]. Advanced Materials, 27, 1195-1200(2015).

    [53] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [55] Liu N, Mesch M, Weiss T et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 10, 2342-2348(2010).

    [57] Qu C, Ma S J, Hao J M et al. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters, 115, 235503(2015).

    Tools

    Get Citation

    Copy Citation Text

    Shulin Sun, Qiong He, Jiaming Hao, Shiyi Xiao, Lei Zhou. High-Efficiency Manipulations on Electromagnetic Waves with Metasurfaces[J]. Acta Optica Sinica, 2021, 41(1): 0123003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Dec. 21, 2020

    Accepted: Dec. 25, 2020

    Published Online: Feb. 23, 2021

    The Author Email: Zhou Lei (phzhou@fudan.edu.cn)

    DOI:10.3788/AOS202141.0123003

    Topics