Laser & Optoelectronics Progress, Volume. 60, Issue 8, 0811009(2023)

Development and Prospect of Portable Three-Dimensional Displays

Chen Gao, Ziyin Li, Rengmao Wu, Haifeng Li*, and Xu Liu**
Author Affiliations
  • College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • show less
    References(84)

    [1] Holliman N S, Dodgson N A, Favalora G E et al. Three-dimensional displays: a review and applications analysis[J]. IEEE Transactions on Broadcasting, 57, 362-371(2011).

    [2] Son J Y, Son W H, Kim S K et al. Three-dimensional imaging for creating real-world-like environments[J]. Proceedings of the IEEE, 101, 190-205(2013).

    [3] Shi X W, Yuan H, Lü M X et al. Current status and progress of virtual reality technology in medical field[J]. Laser & Optoelectronics Progress, 57, 010006(2020).

    [4] Hoover M, Miller J, Gilbert S et al. Measuring the performance impact of using the microsoft HoloLens 1 to provide guided assembly work instructions[J]. Journal of Computing and Information Science in Engineering, 20, 061001(2020).

    [5] Lee J H, Yanusik I, Choi Y et al. Automotive augmented reality 3D head-up display based on light-field rendering with eye-tracking[J]. Optics Express, 28, 29788-29804(2020).

    [6] Guo J D, Diao Z H, Yan S F et al. Immersive autostereoscopic display based on curved screen and parallax barrier[J]. Chinese Optics Letters, 19, 013301(2021).

    [7] Favalora G E. Volumetric 3D displays and application infrastructure[J]. Computer, 38, 37-44(2005).

    [8] Maimone A, Georgiou A, Kollin J S. Holographic near-eye displays for virtual and augmented reality[J]. ACM Transactions on Graphics, 36, 1-16(2017).

    [9] Zhang Y P, Fan H X, Wang F et al. Polygon-based computer-generated holography: a review of fundamentals and recent progress[J]. Applied Optics, 61, B363-B374(2022).

    [10] Choi S, Gopakumar M, Peng Y F et al. Neural 3D holography: learning accurate wave propagation models for 3D holographic virtual and augmented reality displays[J]. ACM Transactions on Graphics, 40, 1-12(2021).

    [11] Kimmel J, Hautanen J, Levola T. Display technologies for portable communication devices[J]. Proceedings of the IEEE, 90, 581-590(2002).

    [12] Chien K W, Shieh H P D. Time-multiplexed three-dimensional displays based on directional backlights with fast-switching liquid-crystal displays[J]. Applied Optics, 45, 3106-3110(2006).

    [13] Chen C H, Yeh Y C, Shieh H P D. 3-D mobile display based on Moiré-free dual directional backlight and driving scheme for image crosstalk reduction[J]. Journal of Display Technology, 4, 92-96(2008).

    [14] Brott R, Schultz J. Directional backlight lightguide considerations for full resolution autostereoscopic 3D displays[J]. SID Symposium Digest of Technical Papers, 41, 218-221(2010).

    [15] Teng T C, Tseng L W. Design of a bidirectional backlight using a pair of stacked light guide plates for large dual-view and 3D displays[J]. Applied Optics, 54, 509-516(2015).

    [16] Ting C H, Chang Y C, Chen C H et al. Multi-user 3D film on a time-multiplexed side-emission backlight system[J]. Applied Optics, 55, 7922-7928(2016).

    [17] Wang Y J, Ouyang S H, Chao W C et al. High directional backlight using an integrated light guide plate[J]. Optics Express, 23, 1567-1575(2015).

    [18] Feng J L, Wang Y J, Liu S Y et al. Three-dimensional display with directional beam splitter array[J]. Optics Express, 25, 1564-1572(2017).

    [19] Hwang Y S, Bruder F K, Fäcke T et al. Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements[J]. Optics Express, 22, 9820-9838(2014).

    [20] Sung G Y, Kim Y T, Nam D K et al. Apparatus and method for displaying holographic image using collimated directional backlight unit[P].

    [21] Fan H, Zhou Y G, Wang J H et al. Full resolution, low crosstalk, and wide viewing angle auto-stereoscopic display with a hybrid spatial-temporal control using free-form surface backlight unit[J]. Journal of Display Technology, 11, 620-624(2015).

    [22] Krebs P, Liang H W, Fan H et al. Homogeneous free-form directional backlight for 3D display[J]. Optics Communications, 397, 112-117(2017).

    [23] Borjigjn G, Kakeya H. An autostereoscopic display with time-multiplexed directional backlight using a decentered lens array[C], W2A.2(2019).

    [24] Borjigin G, Kakeya H. Autostereoscopic displays with time-multiplexed directional backlight using curved lens arrays[J]. ITE Transactions on Media Technology and Applications, 9, 80-85(2021).

    [25] Li Z Y, Gao C, Li H F et al. Portable autostereoscopic display based on multi-directional backlight[J]. Optics Express, 30, 21478-21490(2022).

    [26] Li X K, Chen X H, He Y et al. Multi-user, high-resolution, high-quality directional backlight autostereoscopic display[J]. Optics Communications, 520, 128456(2022).

    [27] Lanman D, Hirsch M, Kim Y et al. Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization[J]. ACM Transactions on Graphics, 29, 1-10(2010).

    [28] Wetzstein G, Lanman D, Heidrich W et al. Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays[J]. ACM Transactions on Graphics, 30, 1-12(2011).

    [29] Zhang J H, Fan Z C, Sun D W et al. Unified mathematical model for multilayer-multiframe compressive light field displays using LCDs[J]. IEEE Transactions on Visualization and Computer Graphics, 25, 1603-1614(2019).

    [30] Lanman D, Wetzstein G, Hirsch M et al. Polarization fields: dynamic light field display using multi-layer LCDs[J]. ACM Transactions on Graphics, 30, 1-10(2011).

    [31] Wetzstein G, Lanman D, Hirsch M et al. Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting[J]. ACM Transactions on Graphics, 31, 1-11(2012).

    [32] Heide F, Lanman D, Reddy D et al. Cascaded displays: spatiotemporal superresolution using offset pixel layers[J]. ACM Transactions on Graphics, 33, 1-11(2014).

    [33] Hirsch M, Lanman D, Wetzstein G et al. Construction and calibration of optically efficient LCD-based multi-layer light field displays[J]. Journal of Physics: Conference Series, 415, 012071(2013).

    [34] Maimone A, Fuchs H. Computational augmented reality eyeglasses[C], 29-38(2013).

    [35] Lee S, Jang C, Moon S et al. Additive light field displays: realization of augmented reality with holographic optical elements[J]. ACM Transactions on Graphics, 35, 1-13(2016).

    [36] Lu Y L, Sheng J C, Fang Y et al. Optimizing effect of solid volumetric true 3D display[J]. Chinese Journal of Liquid Crystals and Displays, 31, 518-523(2016).

    [37] Zhu L M, Du G, Lü G Q et al. Performance improvement for compressive light field display with multi-plane projection[J]. Optics and Lasers in Engineering, 142, 106609(2021).

    [38] Liu M L, Lu C H, Li H F et al. Bifocal computational near eye light field displays and structure parameters determination scheme for bifocal computational display[J]. Optics Express, 26, 4060-4074(2018).

    [39] Chen D, Sang X Z, Yu X B et al. Performance improvement of compressive light field display with the viewing-position-dependent weight distribution[J]. Optics Express, 24, 29781-29793(2016).

    [40] Gao C, Dong L Q, Xu L et al. 20.3: weighted simultaneous algebra reconstruction technique (wSART) for additive light field synthesis[J]. SID Symposium Digest of Technical Papers, 53, 243-246(2022).

    [41] Gao C, Liu X, Li H F. GPU acceleration of weighted additive light field displays[C], JW2A.1(2022).

    [42] Liu M L, Lu C H, Li H F et al. Near eye light field display based on human visual features[J]. Optics Express, 25, 9886-9900(2017).

    [43] Gao C, Peng Y F, Wang R et al. Foveated light-field display and real-time rendering for virtual reality[J]. Applied Optics, 60, 8634-8643(2021).

    [44] Lippmann G. La photographie integrale[J]. Comtes Rendus Academie des Sciences, 146, 446-451(1908).

    [45] Li H N. Research on acquisition, reconstruction and display technology in integral imaging system[D], 17-21(2021).

    [46] Wang Z. Studies on integral imaging 3D display[D], 22-26(2017).

    [47] Gao X, Sang X Z, Yu X B et al. 360° light field 3D display system based on a triplet lenses array and holographic functional screen[J]. Chinese Optics Letters, 15, 121201(2017).

    [48] Yang S W, Sang X Z, Yu X B et al. 162-inch 3D light field display based on aspheric lens array and holographic functional screen[J]. Optics Express, 26, 33013-33021(2018).

    [49] Xie X H, Yu X B, Gao X et al. Extended depth of field method with a designed diffraction optical element based on multi-depth fusion and end-to-end optimization[J]. Optics Communications, 517, 128317(2022).

    [50] Wang Y D, Yu X B, Gao X et al. End-to-end optimization of an achromatic diffractive optical element array for integral imaging three-dimensional display[J]. IEEE Photonics Journal, 14, 7052308(2022).

    [51] Zhang H L, Deng H, Yu W T et al. Tabletop augmented reality 3D display system based on integral imaging[J]. Journal of the Optical Society of America B, 34, B16-B21(2017).

    [52] Deng H, Chen C, He M Y et al. High-resolution augmented reality 3D display with use of a lenticular lens array holographic optical element[J]. Journal of the Optical Society of America A, 36, 588-593(2019).

    [53] Zhang H L, Deng H, Li J J et al. Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal[J]. Optics Letters, 44, 387-390(2019).

    [54] Tian L L, Chu F, Zhao W X et al. Fast responsive 2D/3D switchable display using a liquid crystal microlens array[J]. Optics Letters, 46, 5870-5873(2021).

    [55] Shen X, Corral M M, Javidi B. Head tracking three-dimensional integral imaging display using smart pseudoscopic-to-orthoscopic conversion[J]. Journal of Display Technology, 12, 542-548(2016).

    [56] Xiong Z L, Wang Q H, Li S L et al. Partially-overlapped viewing zone based integral imaging system with super wide viewing angle[J]. Optics Express, 22, 22268-22277(2014).

    [57] Okaichi N, Sasaki H, Kano M et al. Integral three-dimensional display system with wide viewing zone and depth range using time-division display and eye-tracking technology[J]. Optical Engineering, 61, 013103(2022).

    [58] Jones A, McDowall I, Yamada H et al. Rendering for an interactive 360° light field display[C], 40(2007).

    [59] Qiao W, Zhou F B, Chen L S. Towards application of mobile devices: the status and future of glasses-free 3D display[J]. Infrared and Laser Engineering, 49, 0303002(2020).

    [60] Chen B S, Zhong Q, Li H F et al. Automatic geometrical calibration for multiprojector-type light field three-dimensional display[J]. Optical Engineering, 53, 073107(2014).

    [61] Ni L X, Li Z X, Li H F et al. 360-degree large-scale multiprojection light-field 3D display system[J]. Applied Optics, 57, 1817-1823(2018).

    [62] Wang H, Xia X X, Yu C et al. Brightness uniformity correction method of light field integral three-dimensional display[J]. Journal of Zhejiang University (Engineering Science), 49, 1-5, 62(2015).

    [63] Peng Y F, Li H F, Zheng Z R et al. Crosstalk evaluation in multiview autostereoscopic three-dimensional displays with an optimized diaphragm applied[J]. Journal of Information Display, 13, 83-89(2012).

    [64] Zhong Q, Peng Y F, Li H F et al. Multiview and light-field reconstruction algorithms for 360° multiple-projector-type 3D display[J]. Applied Optics, 52, 4419-4425(2013).

    [65] Su C, Xia X X, Li H F et al. A penetrable interactive 3D display based on motion recognition (Invited Paper)[J]. Chinese Optics Letters, 12, 60007-60010(2014).

    [66] Peng Y F, Li H F, Wang R et al. Self-calibration three-dimensional light field display based on scalable multi-LCDs[J]. Journal of the Society for Information Display, 20, 653-660(2012).

    [67] Peng Y F. Principle and establishment of the light field three-dimensional display based on spliced view-field[D](2013).

    [68] Wan W Q, Qiao W, Huang W B et al. Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD[J]. Optics Express, 25, 1114-1122(2017).

    [69] Zhou F B, Qiao W, Chen L S. Fabrication technology for light field reconstruction in glasses-free 3D display[J]. Journal of Information Display, 24, 13-29(2023).

    [70] Wan W Q, Qiao W, Huang W B et al. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views[J]. Optics Express, 24, 6203-6212(2016).

    [71] Shi J C, Qiao W, Hua J Y et al. Spatial multiplexing holographic combiner for glasses-free augmented reality[J]. Nanophotonics, 9, 3003-3010(2020).

    [72] Wan W Q, Qiao W, Pu D L et al. Super multi-view display based on pixelated nanogratings under an illumination of a point light source[J]. Optics and Lasers in Engineering, 134, 106258(2020).

    [73] Hua J Y, Hua E K, Zhou F B et al. Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex[J]. Light: Science & Applications, 10, 1-9(2021).

    [74] Hua J Y, Qiao W, Chen L S. Recent advances in planar optics-based glasses-free 3D displays[J]. Frontiers in Nanotechnology, 4, 829011(2022).

    [75] Hua J Y, Yi D H, Qiao W et al. Multiview holographic 3D display based on blazed Fresnel DOE[J]. Optics Communications, 472, 125829(2020).

    [76] Zhou F, Hua J Y, Shi J C et al. Pixelated blazed gratings for high brightness multiview holographic 3D display[J]. IEEE Photonics Technology Letters, 32, 283-286(2020).

    [77] Wu Y C, Rivenson Y, Zhang Y B et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery[J]. Optica, 5, 704-710(2018).

    [78] Shi J C, Hua J Y, Zhou F B et al. Augmented reality vector light field display with large viewing distance based on pixelated multilevel blazed gratings[J]. Photonics, 8, 337(2021).

    [79] Zhou F B, Zhou F, Chen Y et al. Vector light field display based on an intertwined flat lens with large depth of focus[J]. Optica, 9, 288-294(2022).

    [80] Huang Y G, Hsiang E L, Deng M Y et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives[J]. Light: Science & Applications, 9, 1-16(2020).

    [81] Fan Y J, He Y, Chen X H et al. A polarization modulated directional backlight autostereoscopic display[J]. Journal of the Society for Information Display, 31, 3-12(2023).

    [82] Bruder F K, Frank J, Hansen S et al. Expanding the property profile of Bayfol HX films towards NIR recording and ultra-high index modulation[J]. Proceedings of SPIE, 11765, 117650J(2021).

    [83] Weng Y S, Xu D M, Zhang Y N et al. Polarization volume grating with high efficiency and large diffraction angle[J]. Optics Express, 24, 17746-17759(2016).

    [84] Wu R M, Zhang Z J, Li Z Y et al. Waveguide type high-uniformity directional backlight system for naked eye three-dimensional display[P].

    Tools

    Get Citation

    Copy Citation Text

    Chen Gao, Ziyin Li, Rengmao Wu, Haifeng Li, Xu Liu. Development and Prospect of Portable Three-Dimensional Displays[J]. Laser & Optoelectronics Progress, 2023, 60(8): 0811009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Jan. 5, 2023

    Accepted: Mar. 6, 2023

    Published Online: Apr. 13, 2023

    The Author Email: Li Haifeng (lihaifeng@zju.edu.cn), Liu Xu (liuxu@zju.edu.cn)

    DOI:10.3788/LOP230459

    Topics