Study On Optical Communications, Volume. 50, Issue 2, 22007501(2024)

Application of Deep Learning in Impairments Compensation of Optical Fiber Communication

Hong GUO... Pengcheng DENG and Hui YANG* |Show fewer author(s)
Author Affiliations
  • School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
  • show less
    References(45)

    [1] Watts P M, Mikhailov V, Savory S et al. Performance of Single-mode Fiber Links Using Electronic Feed-forward and Decision Feedback Equalizers[J]. IEEE Photonics Technology Letters, 17, 2206-2208(2005).

    [2] Agazzi O E, Hueda M R, Carrer H S et al. Maximum-likelihood Sequence Estimation in Dispersive Optical Channels[J]. Journal of Lightwave Technology, 23, 749-763(2005).

    [3] Alfiad M S, van den Borne D, Kuschnerov M et al. FFE, DFE and MLSE Equalizers in Phase Modulated Transmission Systems[C], 5343310(2009).

    [4] Guiomar F P, Pinto A N. Simplified Volterra Series Nonlinear Equalizer for Polarization-multiplexed Coherent Optical Systems[J]. Journal of Lightwave Technology, 31, 3879-3891(2013).

    [5] Ip E, Kahn J M. Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation[J]. Journal of Lightwave Technology, 26, 3416-3425(2008).

    [6] Xu M R, Cui S, Li J. Advances of Research on Nonlinear Distortion Compensation Technologies for Fiber-optic Communication Systems[J]. Study on Optical Communications, 12-14(2013).

    [7] Dong S, Wang P, Abbas K. A Survey on Deep Learning and Its Applications[J]. Computer Science Review, 40, 100379(2021).

    [8] Sun Z J, Xue L, Xu Y M et al. Overview of Deep Learning[J]. Application Research of Computers, 29, 2806-2810(2012).

    [9] Hinton G E, Salakhutdinov R R. Reducing the Dimensionality of Data with Neural Networks[J]. Science, 313, 504-507(2006).

    [10] Khan F N, Fan Q, Lu C et al. An Optical Communication's Perspective on Machine Learning and Its Applications[J]. Journal of Lightwave Technology, 37, 493-516(2019).

    [11] Saif W S, Esmail M A, Ragheb A M et al. Machine Learning Techniques for Optical Performance Monitoring and Modulation Format Identification: A Survey[J]. IEEE Communications Surveys & Tutorials, 22, 2839-2882(2020).

    [12] Zhang S, Yaman F, Nakamura K et al. Field and Lab Experimental Demonstration of Nonlinear Impairment Compensation Using Neural Networks[J]. Nature Communications, 10, 3033(2019).

    [13] Sengupta S, Basak S, Saikia P et al. A Review of Deep Learning with Special Emphasis on Architectures, Applications and Recent Trends[J]. Knowledge-based Systems, 194, 105596(2020).

    [14] Karanov B, Chagnon M, Thouin F et al. End-to-end Deep Learning of Optical Fiber Communications[J]. Journal of Lightwave Technology, 36, 4843-4855(2018).

    [15] Hubel D H, Wiesel T N. Receptive Fields of Cells in Striate Cortex of very Young, Visually Inexperienced Kittens[J]. Journal of Neurophysiology, 26, 994-1002(1963).

    [16] LeCun Y, Bottou L, Bengio Y et al. Gradient-based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).

    [17] Gu J, Wang Z, Kuen J et al. Recent Advances in Convolutional Neural Networks[J]. Pattern Recognition, 77, 354-377(2018).

    [18] Boureau Y L, Ponce J, LeCun Y. A Theoretical Analysis of Feature Pooling in Visual Recognition[C], 111-118(2010).

    [19] Niu X X, Suen C Y. A Novel Hybrid CNN-SVM Classifier for Recognizing Handwritten Digits[J]. Pattern Recognition, 45, 1318-1325(2012).

    [20] Russakovsky O, Deng J, Su H et al. ImageNet Large Scale Visual Recognition Challenge[J]. International Journal of Computer Vision, 115, 211-252(2015).

    [22] Szegedy C, Liu W, Jia Y et al. Going Deeper with Convolutions[C], 7298594(2015).

    [23] LeCun Y, Bengio Y, Hinton G. Deep Learning[J]. Nature, 521, 436-444(2015).

    [24] Yu Y, Si X, Hu C et al. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures[J]. Neural Computation, 31, 1235-1270(2019).

    [26] Creswell A, White T, Dumoulin V et al. Generative Adversarial Networks: an Overview[J]. IEEE Signal Processing Magazine, 35, 53-65(2018).

    [27] Wang D, Zhang M. Artificial Intelligence in Optical Communications: From Machine Learning to Deep Learning[J]. Frontiers in Communications and Networks, 2, 656786(2021).

    [28] Goodfellow I, Pouget-Abadie J, Mirza M et al. Generative Adversarial Networks[J]. Communications of the ACM, 63, 139-144(2020).

    [29] Nowozin S, Cseke B, Tomioka R. F-GAN: Training Generative Neural Samplers Using Variational Divergence Minimization[C], 271-279(2016).

    [31] Arjovsky M, Chintala S, Bottou L. Wasserstein Generative Adversarial Networks[C], 214-223(2017).

    [33] Wang D, Song Y, Li J et al. Data-driven Optical Fiber Channel Modeling: a Deep Learning Approach[J]. Journal of Lightwave Technology, 38, 4730-4743(2020).

    [34] Jiang R, Fu Z, Bao Y et al. Data-driven Method for Nonlinear Optical Fiber Channel Modeling based on Deep Neural Network[J]. IEEE Photonics Journal, 14, 8537608(2022).

    [35] Sidelnikov O, Redyuk A, Sygletos S et al. Advanced Convolutional Neural Networks for Nonlinearity Mitigation in Long-haul WDM Transmission Systems[J]. Journal of Lightwave Technology, 39, 2397-2406(2021).

    [36] Secondini M, Marsella D, Forestieri E. Enhanced Split-step Fourier Method for Digital Backpropagation[C], 6964122(2014).

    [37] Meng J Y, Zhang H B, Zhang M et al. Fiber Nonlinear Impairments Compensation based on IPCA-DNN Algorithm[J]. Acta Optica Sinica, 41, 2406002(2021).

    [38] Karanov B, Liga G, Aref V et al. Deep Learning for Communication over Dispersive Nonlinear Channels: Performance and Comparison with Classical Digital Signal Processing[C], 8919850(2019).

    [40] CHäger C, Pfister H D. Deep Learning of the Nonlinear Schrödinger Equation in Fiber-optic Communications[C], 8437734(2018).

    [41] Shahkarami A, Yousefi M I, Jaouen Y. Efficient Deep Learning of Nonlinear Fiber-optic Communications Using a Convolutional Recurrent Neural Network[C], 668-673(2021).

    [42] Zhou Q, Zhang F, Yang C. AdaNN: Adaptive Neural Network-based Equalizer via Online Semi-supervised Learning[J]. Journal of Lightwave Technology, 38, 4315-4324(2020).

    [43] Zhang Q, Wang Z, Duan S et al. An Improved End-to-end Optical Transmission System based on Deep Learning[C], 9563723(2021).

    [44] Lin B, Yang H, Wang R et al. Convolutional Neural Network-based Signal Demodulation Method for NOMA-PON[J]. Optics Express, 28, 14357-14365(2020).

    [45] Giacoumidis E, Lin Y, Blott M et al. Real-time Machine Learning based Fiber-induced Nonlinearity Compensation in Energy-efficient Coherent Optical Networks[J]. APL Photonics, 5, 5140609(2020).

    Tools

    Get Citation

    Copy Citation Text

    Hong GUO, Pengcheng DENG, Hui YANG. Application of Deep Learning in Impairments Compensation of Optical Fiber Communication[J]. Study On Optical Communications, 2024, 50(2): 22007501

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 22, 2023

    Accepted: --

    Published Online: Apr. 9, 2024

    The Author Email: YANG Hui (yanghuifly@swjtu.edu.cn)

    DOI:10.13756/j.gtxyj.2024.220075

    Topics