Optics and Precision Engineering, Volume. 32, Issue 9, 1395(2024)

Active learning-clustering-group convolutions network for hyperspectral images classification

Jing LIU1,*... Yinqiao LI1 and Yi LIU2 |Show fewer author(s)
Author Affiliations
  • 1School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi'an702, China
  • 2School of Electronic Engineering, Xidian University, Xi'an710071, China
  • show less
    References(29)

    [1] D F HONG, L R GAO, J YAO et al. Graph convolutional networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 59, 5966-5978(2021).

    [2] W Y XIE, X ZHANG, Y S LI et al. Weakly supervised low-rank representation for hyperspectral anomaly detection. IEEE Transactions on Cybernetics, 51, 3889-3900(2021).

    [3] K TAN, X WANG, C NIU et al. Vicarious calibration for the AHSI instrument of Gaofen-5 with reference to the CRCS Dunhuang test site. IEEE Transactions on Geoscience and Remote Sensing, 59, 3409-3419(2021).

    [4] [4] 刘英旭, 蒲春宇, 许典坤, 等. 面向高光谱影像场景分类的轻量化深度全局-局部知识蒸馏网络[J]. 光学 精密工程, 2023, 31(17): 2598-2610. doi: 10.37188/OPE.20233117.2598LIUY X, PUCH Y, XUD K, et al. Lightweight deep global-local knowledge distillation network for hyperspectral image scene classification[J]. Opt. Precision Eng., 2023, 31(17): 2598-2610.(in Chinese). doi: 10.37188/OPE.20233117.2598

    [5] [5] 王碧琳, 王生生, 张哲. 面向领域自适应的部分最优传输高光谱图像分类[J]. 光学 精密工程, 2023, 31(17): 2555-2563. doi: 10.37188/OPE.20233117.2555WANGB L, WANGS S, ZHANGZH. Partial optimal transport-based domain adaptation for hyperspectral image classification[J]. Opt. Precision Eng., 2023, 31(17): 2555-2563.(in Chinese). doi: 10.37188/OPE.20233117.2555

    [6] [6] 王爱丽, 丁姗姗, 刘和, 等. 空谱域适应与XGBoost结合的跨场景高光谱图像分类[J]. 光学 精密工程, 2023, 31(13): 1950-1961. doi: 10.37188/OPE.20233113.1950WANGA L, DINGSH SH, LIUH, et al. Cross-scene hyperspectral image classification combined spatial-spectral domain adaptation with XGBoost[J]. Opt. Precision Eng., 2023, 31(13): 1950-1961.(in Chinese). doi: 10.37188/OPE.20233113.1950

    [7] G LICCIARDI, P R MARPU, J CHANUSSOT et al. Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geoscience and Remote Sensing Letters, 9, 447-451(2012).

    [8] T V BANDOS, L BRUZZONE, G CAMPS-VALLS. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Transactions on Geoscience and Remote Sensing, 47, 862-873(2009).

    [9] [9] 孙伟伟, 杨刚, 彭江涛, 等. 鲁棒多特征谱聚类的高光谱影像波段选择[J]. 遥感学报, 2022, 26(2): 397-405. doi: 10.11834/j.issn.1007-4619.2022.2.ygxb202202013SUNW W, YANGG, PENGJ T, et al. Robust multi-feature spectral clustering for hyperspectral band selection[J]. National Remote Sensing Bulletin, 2022, 26(2): 397-405.(in Chinese). doi: 10.11834/j.issn.1007-4619.2022.2.ygxb202202013

    [10] M AHMAD, A KHAN, A M KHAN et al. Spatial prior fuzziness pool-based interactive classification of hyperspectral images. Remote Sensing, 11, 1136(2019).

    [11] Y WANG, W K YU, Z C FANG. Multiple kernel-based SVM classification of hyperspectral images by combining spectral, spatial, and semantic information. Remote Sensing, 12, 120(2020).

    [12] H W LUO, Y Y TANG, Y L WANG et al. Hyperspectral image classification based on spectral–spatial one-dimensional manifold embedding. IEEE Transactions on Geoscience and Remote Sensing, 54, 5319-5340(2016).

    [13] S Q YU, S JIA, C Y XU. Convolutional neural networks for hyperspectral image classification. Neurocomputing, 219, 88-98(2017).

    [14] C J ZHANG, G D LI, S H DU et al. Three-dimensional densely connected convolutional network for hyperspectral remote sensing image classification. Journal of Applied Remote Sensing, 13, 1(2019).

    [15] S K ROY, G KRISHNA, S R DUBEY et al. HybridSN: exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 17, 277-281(2020).

    [16] W YAO, C LIAN, L BRUZZONE. ClusterCNN: clustering-based feature learning for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 18, 1991-1995(2021).

    [17] M AHMAD, A M KHAN, M MAZZARA et al. A fast and compact 3-D CNN for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2022).

    [18] W W SONG, S T LI, L Y FANG et al. Hyperspectral image classification with deep feature fusion network. IEEE Transactions on Geoscience and Remote Sensing, 56, 3173-3184(2018).

    [19] Z L ZHONG, J LI, Z M LUO et al. Spectral–spatial residual network for hyperspectral image classification: a 3-D deep learning framework. IEEE Transactions on Geoscience and Remote Sensing, 56, 847-858(2018).

    [20] S K ROY, S MANNA, T C SONG et al. Attention-based adaptive spectral-spatial kernel ResNet for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 59, 7831-7843(2021).

    [21] W H GUO, H L YE, F L CAO. Feature-grouped network with spectral-spatial connected attention for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-13(2022).

    [22] X R ZHANG, S W SHANG, X TANG et al. Spectral partitioning residual network with spatial attention mechanism for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14(2022).

    [23] Z G ZHAO, H WANG, X C YU. Spectral–spatial graph attention network for semisupervised hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2022).

    [24] [24] 翁汪磊, 孙伟伟, 任凯, 等. 高光谱影像领域自适应分类方法的对比分析[J]. 遥感技术与应用, 2023, 1–11.WENGW L, SUNW W, RENK, et al.. Comparison of domain adaptation methods for hyperspectral image classification[J]. Remote Sensing Technology and Application, 2023, 1-11. (in Chinese)

    [25] X Y CAO, J YAO, Z B XU et al. Hyperspectral image classification with convolutional neural network and active learning. IEEE Transactions on Geoscience and Remote Sensing, 58, 4604-4616(2020).

    [26] Z LEI, Y ZENG, P LIU et al. Active deep learning for hyperspectral image classification with uncertainty learning. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2022).

    [27] L Y FANG, G Y LIU, S T LI et al. Hyperspectral image classification with squeeze multibias network. IEEE Transactions on Geoscience and Remote Sensing, 57, 1291-1301(2019).

    [28] Z MENG, L C JIAO, M M LIANG et al. A lightweight spectral-spatial convolution module for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 19, 3069202(2022).

    [29] X M ZHANG, Q J TIAN, X F GU. An attention based lightweight network for hyperspectral images classification, 17, 2251-2254(2022).

    Tools

    Get Citation

    Copy Citation Text

    Jing LIU, Yinqiao LI, Yi LIU. Active learning-clustering-group convolutions network for hyperspectral images classification[J]. Optics and Precision Engineering, 2024, 32(9): 1395

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 2, 2023

    Accepted: --

    Published Online: Jun. 2, 2024

    The Author Email: LIU Jing (zyhalj1975@163.com)

    DOI:10.37188/OPE.20243209.1395

    Topics