Electro-Optic Technology Application, Volume. 36, Issue 5, 15(2021)

Application Prospect of SBS Hundred Picosecond Pulse Compression Laser in Electro-optical Countermeasure System(Invited)

LIU Zhao-hong, FAN Rong, LI Ning, ZHANG Qing-lei, WANG Yu-lei, and LV Zhi-wei
Author Affiliations
  • [in Chinese]
  • show less
    References(29)

    [1] [1] Titterton D H. A review of the development of optical countermeasures[J]. Proc SPIE, 2004, 5615.

    [2] [2] Velchev I, Neshev D, Hogervorst W, et al. Pulse compres.sion to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering[J]. Quantum Elec. tronics IEEE Journal of, 1999, 35(12):0-1816.

    [3] [3] BAI Z, YUAN H, LIU Z, et al. Stimulated Brillouin scat. tering materials, experimental design and applications: a review[J]. Optical Materials, 2018, 75: 626-645.

    [4] [4] KANG Z, FAN Z, HUANG Y, et al. High-repetition-rate, high-pulse-energy, and high-beam-quality laser system us. ing an ultraclean closed-type SBS-PCM[J]. Optics Ex. press, 2018, 26(6): 6560-6571.

    [5] [5] YUAN H, WANG Y, LU Z, et al. Active frequency match. ing in stimulated Brillouin amplification for production of a 24J, 200 ps laser pulse[J]. Optics Letters, 2018, 43(4): 511-514.

    [6] [6] LIU Z, WANG Y, BAI Z, et al., Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulat. ed Brillouin scattering[J]. Optics Express, 2018, 26(18): 23051-23060.

    [7] [7] Maier M, Kaiser W, Giordmaine J A. Intense light bursts in the stimulated Raman effect[J]. Physical Review Let. ters, 1966, 17(26): 1275.

    [8] [8] Maier M, Rother W, Kaiser W. Time resolved measure. ments of stimulated Brillouin scattering[J]. Applied Phys. ics Letters, 1967, 10(3): 80-82.

    [9] [9] XU X, FENG C, DIELS J-C, Optimizing sub-ns pulse com. pression for high energy application[J]. Optics Express, 2014, 22(11): 13904-13915.

    [10] [10] BAI Z, WANG Y, LU Z, et al. High compact, high qualitysingle longitudinal mode hundred picoseconds laser basedon stimulated Brillouin scattering pulse compression[J]. Applied Sciences, 2016, 6(1): 29.

    [11] [11] Boyd R W, Masters B R. Nonlinear optics[M]. City: New York: Rochester 2008.

    [12] [12] Meynants G, Dierickx B, Scheffer D. Published. CMOS ac.tive pixel image sensor with CCD performance[C]//CMOS active pixel image sensor with CCD performance, Ad. vanced Focal Plane Arrays and Electronic Cameras II, 1998.

    [16] [16] Theuwissen A J P. Solid-state imaging with charge-cou. pled devices[M]. Kluwer Academic Publishers, Dordrecht,The Netherlands, 1995: 317-348.

    [18] [18] Fossum E R. CMOS image sensors: electronic camera-on-a-chip, IEEE trans electron devices[J]. IEEE Transactions on Electron Devices, 1997, 44(10): 1689-1698.

    [19] [19] ZHANG C, BLARRE L, WALSER R M, et al. Mecha. nisms for laser-induced functional damage to silicon charge-coupled imaging sensors[J]. Applied Optics, 1993, 32(27): 5201-5210.

    [20] [20] Stuart B C, Feit M D, Rubenchik A M, et al. Laser-in. duced damage in dielectrics with nanosecond to subpico. second pulses[J]. Physical Review Letters, 1995, 74(12): 2248.

    [21] [21] Linde D V D, Sokolowsii-tinten K, Bialkowski J. Laser-sol. id interaction in the femtosecond time regime[J]. Applied Surface Science, 1997, 109-110(none): 1-10.

    [22] [22] Stuart B C, Feit M D, Herman S, et al. Nanosecond-to-fem. tosecond laser-induced breakdown in dielectrics[J]. Physi. cal Review B, 1996, 53(4): 1749-1761.

    [23] [23] Tien A, Backus S, Kapteyn H C, et al. Short-pulse laser damage in transparent materials as a function of pulse dura.tion[J]. Physical Review Letters, 1999, 82(19): 3883-3886.

    [24] [24] Chimier B, Uteza O, Sanner N, et al. Damage and ablation thresholds of fused-silica in femtosecond regime[J]. Physi. cal Review B, 2011, 84(9): 094104.

    [25] [25] DU D, LIU X, KORN G, et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Applied Physics Letters, 1994, 64(23): 3071-3070.

    [27] [27] Damzen M J, Hutchinson M H R. High-efficiency la. ser-pulse compression by stimulated Brillouin scatter. ing[J]. Optics Letters, 1983, 8(6): 313-315.

    [28] [28] Schinemann S, Ubachs W, Hogervorst W. Efficient tempo. ral compression of coherent nanosecond pulses in a com. pact SBS generator-amplifier setup[J]. IEEE Journal of Quantum Electronics, 1997, 33(3): 358-366.

    [29] [29] KONG H J, LEE S K, LEE D, et al. Phase control of a stimulated Brillouin scattering phase conjugate mirror by aself-generated density modulation[J]. Applied Physics Let. ters, 2005, 86(5): 051111.

    [30] [30] HON D T. Pulse compression by stimulated Brillouin scat. tering[J]. Optics Letters, 1980, 5(12): 516-518.

    [31] [31] Kmetik V, Fiedorowicz H, Andreev A A, et al. Reliable stimulated Brillouin scattering compression of Nd:YAG la.ser pulses with liquid fluorocarbon for long-time operation at 10 Hz[J]. Applied Optics, 1998, 37(30): 7085-7090.

    [32] [32] Dane C B, Neuman W A, Hackel L A. High-energy SBS pulse compression[J]. IEEE journal of quantum electron. ics, 1994, 30(8): 1907-1915.

    [33] [33] Yoshida H, Hatae T, Fujita H, et al. A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength[J]. Op. tics Express, 2009, 17(16): 13654-13662.

    [34] [34] FENG C, XU X, DIELS J. High-energy sub-phonon life. time pulse compression by stimulated Brillouin scattering

    Tools

    Get Citation

    Copy Citation Text

    LIU Zhao-hong, FAN Rong, LI Ning, ZHANG Qing-lei, WANG Yu-lei, LV Zhi-wei. Application Prospect of SBS Hundred Picosecond Pulse Compression Laser in Electro-optical Countermeasure System(Invited)[J]. Electro-Optic Technology Application, 2021, 36(5): 15

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 26, 2021

    Accepted: --

    Published Online: Dec. 1, 2021

    The Author Email:

    DOI:

    Topics