Infrared and Laser Engineering, Volume. 52, Issue 11, 20230212(2023)
Airborne LiDAR data classification method combining physical and geometric characteristics
[1] K Zhang, L J Ye, X Wen, et al. A dual attention neural network for airborne LiDAR point cloud semantic segmentation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-17(2022).
[4] W Li, Z Luo, Z Xiao, et al. A GCN-based method for eextracting power lines and pylons from airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14(2022).
[8] [8] Zhu Shixian. Research on Critical Technology of Intensity Imaging of 905nm Pulsed Li DAR[D]. Tianjin: Tianjin University, 2018.
Zhu Shixian. Research on critical technology of intensity imaging of 905 nm pulsed LiDAR[D]. Tianjin: Tianjin University, 2018. (in Chinese)
[9] [9] les R Q, Hao S, Mo K C, et al. Point: deep learning on point sets f 3D classification segmentation[C]2017 IEEE Conference on Computer Vision Pattern Recognition, 2017: 7785.
[10] [10] Qi C R, Yi L, Su H, et al. Point++: Deep hierarchical feature learning on point sets in a metric space[C]Advances in Neural Infmation Processing Systems, 2017: 5099–5108.
[11] [11] Hu Q, Yang B, Xie L, et al. RLA: Efficient semantic segmentation of largescale point clouds [C]2020 IEEECVF Conference on Computer Vision Pattern Recognition (CVPR), 2020: 1110511114.
[16] [16] Shinohara T, Xiu H, Matsuoka M, et al. Semantic segmentation f fullwavefm LiDAR data using local hierarchical global feature extraction[C]Sigspatial''20: 28th International Conference on Advances in Geographic Infmation Systems, 2020: 640–650.
Get Citation
Copy Citation Text
Yiqiang Zhao, Qi Zhang, Changlong Liu, Weikang Wu, Yao Li. Airborne LiDAR data classification method combining physical and geometric characteristics[J]. Infrared and Laser Engineering, 2023, 52(11): 20230212
Category:
Received: Apr. 10, 2023
Accepted: --
Published Online: Jan. 8, 2024
The Author Email: Li Yao (liyao@tju.edu.cn)